CST

A Multi-Frequency Microstrip-fed Annular-Slot Antenna

This note describes a multi frequency annular slot antenna. The design is based on the paper: “A Multi-frequency Microstrip-fed Annular Slot Antenna” by Hooman Tehrani and Kai Chang. The entire structure is defined parametrically to allow optimisation and parametric studies. The setup process in CST MICROWAVE STUDIO® takes about 10 to 15 min for an experienced user.


Design of the Annular Slot Antenna. To allow optimisation the entire structure is defined parametrically.
Figure 1: Design of the Annular Slot Antenna. To allow optimisation the entire structure is defined parametrically.

The substrate has a thickness of 0.762 mm and a dielectric constant of 2.45. The width of the 50 Ohm Microstrip line is 2.16 mm. All other dimesions can be found in following table. All values are in mm.


Parameter definition. All values are in mm
Figure 2: Parameter definition. All values are in mm

Calculation Results

The simulation results agree very well with the published results (Figure 3). Several slot resonances are excited. The simulated resonance frequencies are at 3.5 GHZ, 4.5 GHz and 6.5 GHz respectively.


Comparison of published and MWS Results.
Figure 3: Comparison of published and MWS Results.


Radiation Pattern at 3.5 GHz, 4.5 GHz and 6.5 GHz
Figure 4: Radiation Pattern at 3.5 GHz, 4.5 GHz and 6.5 GHz


CST Article "A Multi-Frequency Microstrip-fed Annular-Slot Antenna"
last modified 28. Feb 2008 10:42
printed 25. Apr 2014 9:19, Article ID 52
URL:

All rights reserved.
Without prior written permission of CST, no part of this publication may be reproduced by any method, be stored or transferred into an electronic data processing system, neither mechanical or by any other method.

Feedback

This article has not been voted yet

Did you find this article useful?

Other Articles

A Square Loop Antenna Using Hybrid High Impedance Surface and Four Way Wilkinson Power Divider

A Square Loop Antenna Using Hybrid High Impedance Surface and Four Way Wilkinson Power Divider
A simulation of a planar Square Loop Antenna (SLA) on a Hybrid High Impedance Surface including the feeding part using a 4 way Wilkinson power divider is shown in this article. Placing the planar antenna over a hybrid High Impedance Surface (HIS) can lower the overall antenna profile due to the unique reflection phase of the HIS. The planar SLA produces a semi doughnut radiation pattern which is suitable for vehicular communication. The effect of the feed network and cables on the antenna performance is considered. Read full article..

X-Band Squintless Horn Antenna Array (96 elements)

X-Band Squintless Horn Antenna Array (96 elements)
This article concerns the design of a X-Band squintless horn antenna array consisting out of 96 radiating elements. The full design of the 2.4m antenna blank (including the simultaneous excitation of all 96 arms) has been performed within CST MICROWAVE STUDIO®. The simulated results have been in an excellent agreement with compact range measurements. Read full article..

On the determination of the impulse response of Ultra-wideband antennas

On the determination of the impulse response of Ultra-wideband antennas Document type
Sebastian Sczyslo, Gunnar Armbrecht, Holger Thye, Sven Dortmund, Thomas Kaiser, Leibniz Universität Hannover This contribution deals with the accurate determination of the impulse response of Ultra-wideband (UWB) antennas both by simulation and measurement. As can be found in recent literature, knowledge about the impulse response does not only allow for the derivation of further antenna parameters such as gain or group delay, but also to design more efficient receivers and to run more realistic simulations. Here we will exemplarily use the cone antenna as the antenna under test (AUT), as this is a very prominent antenna type in the field of UWB. In the first part CST Microwave Studio (CST MWS) is used to model and simulate the antenna in the transmit case. To extract the radiated E-Field, we developed a new macro based on the transient broadband farfield monitor. Applying this macro is time-saving compared to the conventional method using farfield probes which can be found in many publications. The transmit impulse response is determined by a deconvolution operation. Finally Lorentz reciprocity is used to evaluate the receive impulse response as it is common in literature. In the second part the obtained simulation results from CST MWS will be compared to measurement results. At this we will not only use the conventional two-antenna method but we will also introduce the GTEM method, as a fast and accurate antenna measurement method. We developed this novel method based upon our previous research in the field of GTEM cells and it allows for a direct determination of the receive impulse response using a single antenna only. Read full article..

Heat Load Investigation of a PETRA III Toroid

Heat Load Investigation of a PETRA III Toroid
In a particle accelerator thermal considerations are often of great importance. Therefore in this article the combination of a wake field analysis to figure out the deposited losses and a subsequent thermal simulation are shown using the toroid of DESY PETRA III ring as example. Read full article..

Dichroic Filter

Dichroic Filter
The dichroic filter is an example for setting up simulations of frequency selective surfaces. The simulation is performed with CST MICROWAVE STUDIO® and compared to measurements. Read full article..
Back Back  

Your session has expired. Redirecting you to the login page...