CST

A Multi-Frequency Microstrip-fed Annular-Slot Antenna

This note describes a multi frequency annular slot antenna. The design is based on the paper: “A Multi-frequency Microstrip-fed Annular Slot Antenna” by Hooman Tehrani and Kai Chang. The entire structure is defined parametrically to allow optimisation and parametric studies. The setup process in CST MICROWAVE STUDIO® takes about 10 to 15 min for an experienced user.


Design of the Annular Slot Antenna. To allow optimisation the entire structure is defined parametrically.
Figure 1: Design of the Annular Slot Antenna. To allow optimisation the entire structure is defined parametrically.

The substrate has a thickness of 0.762 mm and a dielectric constant of 2.45. The width of the 50 Ohm Microstrip line is 2.16 mm. All other dimesions can be found in following table. All values are in mm.


Parameter definition. All values are in mm
Figure 2: Parameter definition. All values are in mm

Calculation Results

The simulation results agree very well with the published results (Figure 3). Several slot resonances are excited. The simulated resonance frequencies are at 3.5 GHZ, 4.5 GHz and 6.5 GHz respectively.


Comparison of published and MWS Results.
Figure 3: Comparison of published and MWS Results.


Radiation Pattern at 3.5 GHz, 4.5 GHz and 6.5 GHz
Figure 4: Radiation Pattern at 3.5 GHz, 4.5 GHz and 6.5 GHz


CST Article "A Multi-Frequency Microstrip-fed Annular-Slot Antenna"
last modified 28. Feb 2008 10:42
printed 23. Apr 2014 8:39, Article ID 52
URL:

All rights reserved.
Without prior written permission of CST, no part of this publication may be reproduced by any method, be stored or transferred into an electronic data processing system, neither mechanical or by any other method.

Feedback

This article has not been voted yet

Did you find this article useful?

Other Articles

Left-Handed Wave Propagation of a Coplanar Waveguide based on Split Ring Resonators

Left-Handed Wave Propagation of a Coplanar Waveguide based on Split Ring Resonators
Metamaterials are a new class of man-made materials that can be engineered to respond to electromagntec fields in unconventional ways. The response of a material to an EM field is described by permittivity and can be tuned in meta-materials to assume negative values. This means that the material can reverse the phase of propagating waves and are commonly referred to as left-handed materials (LHM). A famous concept of LHM -the Split Ring Resonator (SRR) consists of periodic metallic structures controlling EM-properties on a macroscopic scale. The model presented here consists of a coplanar waveguide (CPW) periodically coupled to SRRs forming a bandpass behaviour. Read full article..

Modeling the susceptibility of enclosures to ESD and the effect of attaching cables

Modeling the susceptibility of enclosures to ESD and the effect of attaching cables
This webcast in the series discusses recent advances in modeling ESD generators using CST STUDIO. Direct transient analysis is used to simulate the ESD test waveforms defined by the IEC 61000-4-2 standard. We demonstrate the importance of modeling the physical geometry of the generator, including the ground strap. We simulate a direct contact discharge to an enclosure and predict the resulting current paths and radiated electromagnetic fields. Finally, we investigate the effect of attaching cables to the enclosure. Read full article..

Electrical Performance of High Speed Signaling in Coupled Microstrip Lines

Electrical Performance of High Speed Signaling in Coupled Microstrip Lines
The electrical performance of high speed signaling in coupled differential microstrip lines is analyzed. Based on the modal decomposition analysis, the cancellation frequency in the single-ended insertion loss response is explained and a closed formula is presented for the prediction of such resonant frequencies. Sensitivity analyses are also performed in order to investigate the impact of the solder mask layer and the differential microstrip geometry on the cancellation frequency. Read full article..

Microstrip Bandstop and Lowpass Filters

Microstrip Bandstop and Lowpass Filters
New, compact configurations for RF/microwave bandstop and lowpass filters are presented. Compact footprints are achieved by folding the transmission lines in a microstrip platform. The effect of mutual coupling between the transmission lines, curved line sections, interconnecting lengths of the sections are taken into account to obtain the network parameters for the folded line filters. The folded line filters have practical dimensions for a wide range of electrical specifications, making physical implementation realizable. The filter designs have been validated by using full wave 3D EM simulation using CST MICROWAVE STUDIO®, as well as by comparison with the measurements. The new designs presented should prove useful for a host of embedded passive and RFIC applications in the 1-10 GHz range. Read full article..

Multiple Band-Notched Planar Monopole UWB Antenna

Multiple Band-Notched Planar Monopole UWB Antenna
A multiple band-notched planar monopole antenna for multiband wireless systems is presented. The proposed antenna consists of a wideband planar monopole Antenna and the multiple U-shape slots, producing band-notched characteristics. This technique is suitable for creating ultra-wideband (UWB) antenna with narrow frequency notches or for creating multiband antennas. Various antenna configurations were simulated with CST MICROWAVE STUDIO®. Read full article..
Back Back  

Your session has expired. Redirecting you to the login page...