CST

A Multi-Frequency Microstrip-fed Annular-Slot Antenna

This note describes a multi frequency annular slot antenna. The design is based on the paper: “A Multi-frequency Microstrip-fed Annular Slot Antenna” by Hooman Tehrani and Kai Chang. The entire structure is defined parametrically to allow optimisation and parametric studies. The setup process in CST MICROWAVE STUDIO® takes about 10 to 15 min for an experienced user.


Design of the Annular Slot Antenna. To allow optimisation the entire structure is defined parametrically.
Figure 1: Design of the Annular Slot Antenna. To allow optimisation the entire structure is defined parametrically.

The substrate has a thickness of 0.762 mm and a dielectric constant of 2.45. The width of the 50 Ohm Microstrip line is 2.16 mm. All other dimesions can be found in following table. All values are in mm.


Parameter definition. All values are in mm
Figure 2: Parameter definition. All values are in mm

Calculation Results

The simulation results agree very well with the published results (Figure 3). Several slot resonances are excited. The simulated resonance frequencies are at 3.5 GHZ, 4.5 GHz and 6.5 GHz respectively.


Comparison of published and MWS Results.
Figure 3: Comparison of published and MWS Results.


Radiation Pattern at 3.5 GHz, 4.5 GHz and 6.5 GHz
Figure 4: Radiation Pattern at 3.5 GHz, 4.5 GHz and 6.5 GHz


CST Article "A Multi-Frequency Microstrip-fed Annular-Slot Antenna"
last modified 28. Feb 2008 10:42
printed 10. Feb 2016 8:55, Article ID 52
URL:

All rights reserved.
Without prior written permission of CST, no part of this publication may be reproduced by any method, be stored or transferred into an electronic data processing system, neither mechanical or by any other method.

Feedback

This article has not been voted yet

Did you find this article useful?

Other Articles

Installed Performance of Communication Antenna Arrays

Installed Performance of Communication Antenna Arrays Document type
The presence of multiple communication antennas on a tower means that antennas may have to be installed in sub-optimal positions. Electromagnetic simulation can be used to design the antennas themselves, and also to optimise the positioning of the antennas on the tower. This article will describe how multiple solvers in CST MICROWAVE STUDIO® can be combined to predict where to install an omnidirectional stacked bicone antenna array to minimise loss of omnidirectionality. Read full article..

3D EM Simulation in the Design Flow of High-Speed Multi-Pin Connectors

3D EM Simulation in the Design Flow of High-Speed Multi-Pin Connectors
This article describes the design flow for a high speed connector using different simulation tools. The goal is to enable a first pass design without time-intensive and costly iteration steps. In addition to other simulation tools, CST MICROWAVE STUDIO® (CST MWS) is used during different stages of the design process to find fundamental design parameters and to predict the behaviour of a complete telecommunication system. Read full article..

Dichroic Filter

Dichroic Filter
The dichroic filter is an example for setting up simulations of frequency selective surfaces. The simulation is performed with CST MICROWAVE STUDIO® and compared to measurements. Read full article..

Embedded Dual-Band GSM Antenna Design

Embedded Dual-Band GSM Antenna Design Document type
This application note illustrates how CST MICROWAVE STUDIO® (CST MWS), Antenna Magus and Optenni Lab can be used in combination to improve an existing GSM tracking device application. The requirement was to replace an existing “off-the-shelf” antenna on a GSM tracking device with an embedded, integrated antenna in order to reduce manufacturing and component costs. The new antenna had to operate inside the standard GSM 900 and 1800 frequency bands and had to use the existing substrate and metallic layers, without changing the existing circuit layout or the size of the PCB. The new integrated antenna was designed using Antenna Magus in combination with CST MWS to account for unwanted coupling, ensuring that the antenna operated within the desired frequency bands. Read full article..

Lead Frame Package Layout and EM Simulation using CAD Design Software and CST STUDIO SUITE

Lead Frame Package Layout and EM Simulation using CAD Design Software and CST STUDIO SUITE Document type
Lead frame packages are an established packaging technology for many types of applications, due to their manufacturing and cost advantages. When the limits of this technology are pushed, careful analysis of these packages using state-of-the-art design and simulation tools becomes essential. This technical white paper describes a workfl ow of rapid design and simulation for lead frame packages using CAD Design Software’s (CDS) Electronics Packing Designer (EPD) software, and CST STUDIO SUITE®. Read full article..
Back Back  

Your session has expired. Redirecting you to the login page...