CST

A Multi-Frequency Microstrip-fed Annular-Slot Antenna

This note describes a multi frequency annular slot antenna. The design is based on the paper: “A Multi-frequency Microstrip-fed Annular Slot Antenna” by Hooman Tehrani and Kai Chang. The entire structure is defined parametrically to allow optimisation and parametric studies. The setup process in CST MICROWAVE STUDIO® takes about 10 to 15 min for an experienced user.


Design of the Annular Slot Antenna. To allow optimisation the entire structure is defined parametrically.
Figure 1: Design of the Annular Slot Antenna. To allow optimisation the entire structure is defined parametrically.

The substrate has a thickness of 0.762 mm and a dielectric constant of 2.45. The width of the 50 Ohm Microstrip line is 2.16 mm. All other dimesions can be found in following table. All values are in mm.


Parameter definition. All values are in mm
Figure 2: Parameter definition. All values are in mm

Calculation Results

The simulation results agree very well with the published results (Figure 3). Several slot resonances are excited. The simulated resonance frequencies are at 3.5 GHZ, 4.5 GHz and 6.5 GHz respectively.


Comparison of published and MWS Results.
Figure 3: Comparison of published and MWS Results.


Radiation Pattern at 3.5 GHz, 4.5 GHz and 6.5 GHz
Figure 4: Radiation Pattern at 3.5 GHz, 4.5 GHz and 6.5 GHz


CST Article "A Multi-Frequency Microstrip-fed Annular-Slot Antenna"
last modified 28. Feb 2008 10:42
printed 28. Sep 2016 10:28, Article ID 52
URL:

All rights reserved.
Without prior written permission of CST, no part of this publication may be reproduced by any method, be stored or transferred into an electronic data processing system, neither mechanical or by any other method.

Feedback

This article has not been voted yet

Did you find this article useful?

Other Articles

RF Thermoablation in a Human Liver using the Bioheat Formulation in CST STUDIO SUITE

RF Thermoablation in a Human Liver using the Bioheat Formulation in CST STUDIO SUITE
This article is concerned with the evaluation of the temperature distribution inside a human liver when a catheter is inserted. It summarises the simulations performed with the HUGO and University of L'Aquila's ALES anatomical models. The co-simulation procedure using both CST MICROWAVE STUDIO® (CST MWS) and CST EM STUDIO® (CST EMS) is also described. With permission and courtesy of the University of L'Aquila, Italy. Read full article..

Modeling and Measurement of Shielding Enclosures

Modeling and Measurement of Shielding Enclosures
The shielding effectiveness (SE) of an enclosure has been simulated by using the CST MICROWAVE STUDIO® (CST MWS) and then compared to measurement from a known reference case. Read full article..

3D EM simulation of mixed analog / digital multilayer PCB

3D EM simulation of mixed analog / digital multilayer PCB
This article describes the use of CST MICROWAVE STUDIO® (CST MWS) to solve a coupling problem in a mixed analog – digital multilayer PCB card. Courtesy and permission of Alvarion, Ltd, Tel-Aviv, Israel. This example gives an insight into the usefulness of simulation of problems that cannot be investigated easily via measurement and allows the engineer to carry out virtual experiments as demonstrated here with the cutting of the signal trace. Experiments may show the presence of a particular problem but not its location. Even when the problem has been located, further prototypes and experiments are costly and time-consuming. CST MWS offers a straightforward workflow for the set-up and simulation of such problems via its advanced user-interface and EDA interfaces. Read full article..

Visualize, identify and optimize with MWS @ Hirschmann

Visualize, identify and optimize with MWS @ Hirschmann Document type
Winfried Krämer, Hirschmann Automation and Control GmbH Hirschmann Automation and Control is one of the leading providers of industrial Ethernet at bitrates up to 10 Gigabit per second. Using CST MWS we have examined signal paths regarding signal quality, crosstalk and EMC related issues and have identified influences of vias, stackup and other parameters affecting the quality of our high speed interfaces. As the measurement of impedance of critical pins in the power delivery system is challenging, a simulation allows us to evaluate the position dependent information. Furthermore, we also succeeded in improving housing design in RF-matters, tag and optimize the “sites of crime”. Using the capabilities of a simulation helps us to fit the “first shot” layout into a demanding environment and also to optimize an existing layout to ensure performance at growing requirements to the designs. Additionally, it gives us a cost and time effective possibility to answer the “what if” – questions and visualize the points of interest helps to generate reliable constrains. Read full article..

IC Package Simulation

IC Package Simulation
In this article the simulation of parasitic effects in a standard IC package is shown. The transient simulator in CST MICROWAVE STUDIO® (CST MWS) offers the advantage, that effects such as crosstalk and signal delay can be investigated in both time and frequency domain. Additionally, the simulation results can be used to generate an equivalent RLC network model that has the same S-Parameters as the 3D EM simulation but can be included in the overal circuit simulation of the logical parts of the IC. Read full article..
Back Back  

Your session has expired. Redirecting you to the login page...