CST

Patch Antenna Array

Interference

Antenna Arrays like this can be studied efficiently using CST MICROWAVE STUDIOs postprocessing engine. Near- and farfield combinations for arbitrary amplitudes and phase angles at each input port can be calculated in seconds. The calculation of one patch antenna in the time domain requires about ten minutes with MICROWAVE STUDIOs transient solver.


Circular patch antenna array
Figure 1: Circular patch antenna array

The antenna array consists of four circular patches, each of which are excited by a coaxial feed, placed slightly off-center. The front corner has been cut away in order to show the coaxial feed.


Destructive Interference
Figure 2: Destructive Interference


Constructive Interference
Figure 3: Constructive Interference


CST Article "Patch Antenna Array"
last modified 12. Dec 2006 12:12
printed 6. Mar 2015 3:03, Article ID 9
URL:

All rights reserved.
Without prior written permission of CST, no part of this publication may be reproduced by any method, be stored or transferred into an electronic data processing system, neither mechanical or by any other method.

Feedback

1 of 2 people found this article useful

Did you find this article useful?

Other Articles

The use of CST Microwave Studio in the Design of an X-Band Circularly Polarised Splashplate Antenna

The use of CST Microwave Studio in the Design of an X-Band Circularly Polarised Splashplate Antenna Document type
Richard Roberts, Astrium Ltd This presentation describes how CST Microwave Studio (MWS) has been used in conjunction with POS 5 and GRASP 8 to design an X-Band circularly polarised Splashplate Antenna. The antenna essentially consists of a centre fed reflector (17 wavelengths in diameter), the Splashplate feed (~2 wavelengths in diameter), and a septum polariser to allow the Tx and Rx bands to operate in opposite polarisations. A significant factor in the design is that a short circuit had to be assumed at the other port of the septum polariser meaning that the return loss of the Splashplate feed and the reflector were critical to the axial ratio performance. CST MWS enabled this aspect of the design to be modelled and analysed using the T-solver. Comparison of the measured and predicted antenna performance has validated the design process. Although a compliant performance has been achieved, it is evident that some modelling improvements could be sought in order to get a better convergence between prediction and measurement. Read full article..

An efficient approach for wide angle scattering analysis of TT&C antennas on satellite

An efficient approach for wide angle scattering analysis of TT&C antennas on satellite Document type
Marcello Zolesi, Thales Alenia Space The scope of the present work is to analyze the effective coverage of TT&C subsystem of a LEO satellite at an altitude of 700 kilometres. The antenna assembly is made of two units, Main and Fill-In Antennas, accommodated on opposite sides of the spacecraft. Starting from the free-space radiation performance of each of the two antennas, the problem to predict the global TT&C subsystem radiation pattern in presence of the spacecraft is treated in order to identify potential blind areas or interferences caused by the neighbouring structures. The prediction of electromagnetic field scattered in complex environment is usually a hard task since the solution cannot generally be expressed in a simple and/or closed analytical form. Therefore a variety of numerical methods have been developed in literature. The effectiveness of a single method depends on the type of the electromagnetic environment and the working frequencies. The calculations of the global TT&C subsystem radiation pattern in presence of the main spacecraft structures are carried out by means a full-wave electromagnetic software, CST Microwave Studio Integral Solver. The Integral Solver is ideally suited for electrically large structures respect to the wavelength, when dominated by electrical conductors. This solver uses a combination of an open boundary integral formulation and a Multilevel Fast Multi-Pole Method (MLFMM) exhibiting an optimal complexity in terms of memory and simulation time compared to the traditional Method of Moment (MoM). Key-words: Coverage, EIRP, MLFMM, MoM, TT&C antennas. Read full article..

Antenna Cosite Interference Analysis in a Unmanned Aerial Vehicle UAV

Antenna Cosite Interference Analysis in a Unmanned Aerial Vehicle UAV
Whenever we have multiple transmitters and receivers co-located on a common platform such as a UAV, we must take care to ensure that all systems operate as intended. The RF environment will be very dense and the probability of co-site interference high. Analysis plays an increasingly important role in identifying the cause of interference and ensuring compatibility between the various RF systems. Through a recent collaboration with Delcross Technologies and interfacing with their EMIT tool, CST is providing a complete workflow for true cosite analysis. This webinar presents the full workflow including rapid synthesis of antenna models, broadband antenna coupling analysis and prediction of interference between transceivers including effects such as spurious harmonics, intermodulation and radio de-sensitization. Read full article..

MIMO Antenna Systems for Advanced Communication

MIMO Antenna Systems for Advanced Communication
Multiple-input, multiple-output (MIMO) systems are a major field of study for researchers interested in achieving high data rate communication in typical urban multi-path environments. Although a fast analysis can be based on S-parameters, this approach has limitations. A more detailed analysis needs to take into account broadband, farfield and antenna properties. These are especially important in presence of the human body. This webinar will show how simulation can be used to calculate the effect of hand and head (e.g. CTIA models) on mobile devices, MIMO for wearable antennas and different power weighting functions for different environments, along with post-processing options for envelope correlation (including spatial power weighting functions), derived quantities diversity gain and multiplexing efficiency. Finally, there will be a demonstration of the link between CST MICROWAVE STUDIO® and Optenni Lab for multiple antenna matching to optimize power transfer to antennas while minimizing cross-coupling. Read full article..

Wearable Antennas for Body Centric Wireless Communication

Wearable Antennas for Body Centric Wireless Communication
Wireless body area networks are an increasingly important area of research and show great promise for monitoring and communication in diverse application areas such as healthcare, public safety and defence. The antenna is the crucial enabling component which allows communication between sensors, and with other off-body systems (e.g. GPS and GSM). But the antenna operates in a particularly challenging environment, in close proximity to the human body, and its performance may be affected by deformation, e.g. if integrated directly into clothing. The design of these antennas is thus challenging, and numerical simulation is an indispensable tool for the antenna engineer. This webinar will discuss the key challenges in the virtual prototyping of body worn antennas, describing how CST MICROWAVE STUDIO can be used to construct realistic flexible and conformal geometries, and how these can be studied and optimized in the context of their body-centric environment. Read full article..
Back Back  

Your session has expired. Redirecting you to the login page...