CST

Patch Antenna Array

Interference

Antenna Arrays like this can be studied efficiently using CST MICROWAVE STUDIOs postprocessing engine. Near- and farfield combinations for arbitrary amplitudes and phase angles at each input port can be calculated in seconds. The calculation of one patch antenna in the time domain requires about ten minutes with MICROWAVE STUDIOs transient solver.


Circular patch antenna array
Figure 1: Circular patch antenna array

The antenna array consists of four circular patches, each of which are excited by a coaxial feed, placed slightly off-center. The front corner has been cut away in order to show the coaxial feed.


Destructive Interference
Figure 2: Destructive Interference


Constructive Interference
Figure 3: Constructive Interference


CST Article "Patch Antenna Array"
last modified 12. Dec 2006 12:12
printed 24. Feb 2017 6:48, Article ID 9
URL:

All rights reserved.
Without prior written permission of CST, no part of this publication may be reproduced by any method, be stored or transferred into an electronic data processing system, neither mechanical or by any other method.

Feedback

2 of 5 people found this article useful

Did you find this article useful?

Other Articles

A Small, Efficient, Linear-polarized Omni-directional Antenna

A Small, Efficient, Linear-polarized Omni-directional Antenna
Nearly full-sized performance from a spherical coil only 1/6th as long in the E-plane normal direction as a half-wave dipole antenna. Read full article..

Simulation Enabling In-flight Connectivity

Simulation Enabling In-flight Connectivity
Webinar recording of the CST Leading Technology Webinar Series 2011 - Mobile phone and wi-fi communication while travelling by air is now being offered by several airlines and will become standard in future. Ensuring a reliable link depends on having properly designed antennas for the in-aircraft picocell base-stations and for the satellite or ground links outside the aircraft. Read full article..

Intelligent Representation of Anechoic Chamber Wall Cuts Electromagnetic Simulation Time 95%

Intelligent Representation of Anechoic Chamber Wall Cuts Electromagnetic Simulation Time 95%
Electromagnetic simulation of anechoic chambers is a very difficult task. Gwenaël Dun, R&D Engineer for Siepel, used a variety of different electromagnetic simulation tools to address this challenge in the past but ran into problems with both poor accuracy and long compute times. He then worked with the developers of CST MICROSTRIPES™ electromagnetic simulation software, to implement a feature that makes it possible to model the ferrite absorbers used in the chamber as a boundary condition rather than part of the computational domain. This change made it possible to increase mesh size by a factor of 15, reducing compute time by more than 95%. The simulation results provided a near-perfect match to physical testing. Read full article..

Miniaturization of reflectarray antennas

Miniaturization of reflectarray antennas Document type
Miniaturization of reflectarray antennas Read full article..

Electromagnetic Simulation in Radar System Design

Electromagnetic Simulation in Radar System Design
This webcast will discuss the application of CST STUDIO Suite to a full radar system design. CST’s complete simulation technology enables the most appropriate method/solver to be applied to the diverse range of components typically found in a radar system. For the digital design, combined PCB/package analysis is necessary to achieve adequate signal integrity and minimize interference/emissions Read full article..
Back Back  

Your session has expired. Redirecting you to the login page...