Combined 3D electromagnetic and spin response simulation of MRI systems

Magnetic Resonance Imaging (MRI) systems rely on a complex interaction of different physical domains: electromagnetic fields trigger a response of nuclear spins inside the human body, while thermal heating of the body needs to be controlled. The quality of the resulting MR image depends both on the homogeneity of the underlying RF fields and on the sequence chosen to create the image. In this webinar we will present a co-simulation of CST MICROWAVE STUDIO (CST MWS) for the coil design and the Jülich Extensible MRI Simulator (JEMRIS – www.jemris.org) to show these joint effects. CST MWS is used to design and simulate the MRI RF coil. This is a challenging task, especially for modern high field systems. Typically the "coils" are based on multi-channel systems which require circuit based matching and tuning to obtain the desired homogeneous field overlay. The new CST MRI-toolbox helps to directly evaluate the essential quantities such as the B1+ and B1- fields, their statistical properties, but also safety relevant quantities such as general averaged SAR results, "worst case SAR" of multi-channel systems or "total SAR per material". Transient thermal heating based on the bioheat equation can also be monitored.JEMRIS is used to simulate the image generation based on the Bloch equations, with EM fields simulated in MWS and the selected MR sequence as inputs. The images obtained through simulation show potential artefacts due to non-ideal field distributions or the sequence properties. Additional outputs can be generated to obtain important quantities such as g-factors and the image signal to noise ratio.

CST Article "Combined 3D electromagnetic and spin response simulation of MRI systems webinar"
last modified 19. Sep 2013 1:06
printed 30. Aug 2015 1:31, Article ID 776

All rights reserved.
Without prior written permission of CST, no part of this publication may be reproduced by any method, be stored or transferred into an electronic data processing system, neither mechanical or by any other method.


2 of 4 people found this article useful

Did you find this article useful?

Other Articles

Visualize, identify and optimize with MWS @ Hirschmann

Visualize, identify and optimize with MWS @ Hirschmann Document type
Winfried Krämer, Hirschmann Automation and Control GmbH Hirschmann Automation and Control is one of the leading providers of industrial Ethernet at bitrates up to 10 Gigabit per second. Using CST MWS we have examined signal paths regarding signal quality, crosstalk and EMC related issues and have identified influences of vias, stackup and other parameters affecting the quality of our high speed interfaces. As the measurement of impedance of critical pins in the power delivery system is challenging, a simulation allows us to evaluate the position dependent information. Furthermore, we also succeeded in improving housing design in RF-matters, tag and optimize the “sites of crime”. Using the capabilities of a simulation helps us to fit the “first shot” layout into a demanding environment and also to optimize an existing layout to ensure performance at growing requirements to the designs. Additionally, it gives us a cost and time effective possibility to answer the “what if” – questions and visualize the points of interest helps to generate reliable constrains. Read full article..

Kymeta Develops Novel Metamaterial Antennas with CST STUDIO SUITE

Kymeta Develops Novel Metamaterial Antennas with CST STUDIO SUITE Document type
Satellite broadband promises fast, flexible internet access from anywhere in the world. Although major satellite operators have already begun deploying next-generation satellites with high data throughputs, accessing these currently requires bulky, expensive equipment with high power requirements for the user. Unlocking the full potential of these data links requires an antenna solution that can track satellites while also being portable enough to attach to a vehicle or take into the field. Read full article..

Light Trapping in Thin-Film Silicon Solar Cells with periodic Nano-Structures

Light Trapping in Thin-Film Silicon Solar Cells with periodic Nano-Structures
This article summarises the simulation study conducted with CST MICROWAVE STUDIO® (CST MWS) of thin-film silicon solar cells with nano-structured interfaces. The good agreement between the experimental data and solar cell simulations shows the reliability and versatility of the performed FIT simulations to investigate nano-optics of thin-film solar cell devices in 3 dimensions. This article is presented with the courtesy and permission of Hasse, C. and Stiebig, H. , Forschungszentrum Juelich who gave a presentation of their work at the CST European User group Meeting at Boppard, Germany, 9-10th March 2006. Read full article..

Power Integrity Simulation for High Speed Board using CST PCBS

Power Integrity Simulation for High Speed Board using CST PCBS
Power Integrity simulation for a high speed board, PCI-Express. using CST PCBS is shown here. The first simulation is the static power integrity simulation, known as IR-Drop. The second simulation is the high freq. power integrity simulation, whereas the decoupling capacitors are also taken into account to reduce the impedance of the board. Read full article..

Cavity Modes in a Shielding Enclosure

Cavity Modes in a Shielding Enclosure
Ms. Lis box: This shielding enclosure shows electromagnetic interference (EMI) from a slot, caused by the coupling of the internal source with cavity modes. Read full article..
Back Back  

Your session has expired. Redirecting you to the login page...