CST

Microfabricated Folded Waveguide for Broadband Traveling Wave Tube Application

As in most other technical areas, microfabrication is becoming more and more popular in the vacuum tube community. The reason is the need for miniaturization when going to higher frequencies. Circuits created by conventional fabrication techniques suffer from fragility. To circumvent this problem the structure suggested and analysed by R. Zheng and X. Chen [1] is dominated by metal and therefore much more robust. 


Structure of the folded waveguide.
Figure 1: Structure of the folded waveguide.

The slow wave structure is realized by a 50 period folded waveguide as shown in figure 1. The structure is fed at the RF input via waveguide ports known from CST MWS. Likewise the obtained output power is recorded at RF output with waveguide ports. The particles are traveling perpendicular to the waveguide as indicated by the arrow in figure 1.


Dispersion diagram of a single period.
Figure 2: Dispersion diagram of a single period.

A cold test simulation of a single period performed with CST MWS Eigenmode solver (see Slow Wave Article) gives the dispersion diagram shown in figure 2 (see also [1]).  The normalized phase velocity in this frequency band is about 0.255. Therefore the particles are emitted from the surface shown in figure 3 with a slightly higher beta of 0.2556 in order to transfer EM power from the electron beam to the RF-structure. The emitted beam current is 50mA.


Particle emission surface.
Figure 3: Particle emission surface.

The input signal is a monofrequent sinus with an input power of 2.5mW and a frequency of 230GHz. The port amplitudes are wave amplitudes and in units sqrt(Power). Therefore the input signal (red) illustrated in figure 4 shows an amplitude of 0.05. The output signal saturates at 480ps with an amplitude of 0.514 which results in a gain of 20.24dB. This agrees quite well to the gain of 20.9dB given by Pierce small signal theory (see page 282 in [2]).

The frequency spectrum of the output signal has a peak as well at 230GHz. The additional ripples are resulting due to a finite simulation time which is in time domain a multiplication with a rectangular pulse. In frequency domain this is equivalent to the convolution with an SI function which is seen in figure 4.


Time signals of RF in and out (left) and frequency spectrum of output signal (right).
Figure 4: Time signals of RF in and out (left) and frequency spectrum of output signal (right).

The particle trajectory is illustrated in figure 5. A zoom into the end section shows very nicely the sections with low and high velocity. This indicates the velocity modulation and the interaction of the beam with the electromagnetic wave which finally amplifies the RF input signal.


Particle trajectory and zoom into end section.
Figure 5: Particle trajectory and zoom into end section.

The small signal analysis has been carried out by R. Zheng and X. Chen [1] for the complete frequency band of interest and compared to Pierce small signal theory. The comparison shows a reasonable agreement with respect to the validity of Pierce theory (see figure 6) which could be violated by space charge effects and electron bunching.


Comparison of CST PS PIC analysis and Pierce small signal theory (courtesy of R. Zheng and X. Chen [1]).
Figure 6: Comparison of CST PS PIC analysis and Pierce small signal theory (courtesy of R. Zheng and X. Chen [1]).

The article shows the cold and hot test simulation of a slow wave structure by means of  CST MWS Eigenmode solver and CST PS PIC solver. The results are in good agreement with theoretical values. Compared to a CST MWS model, which often is already existent after cold test simulations, only slight modifications have to be made to include the particles. The output power is directly provided by waveguide ports known from CST MWS. The signals can conveniently be postprocessed into gain and frequency spectrum inside the CST template based postprocessing.

References:

[1] R. Zheng and X. Chen, "Design and 3-D Simulation of Microfabricated Folded Waveguide for a 220GHz Broadband Travelling-Wave Tube Application", Proceedings of the IVEC 2009, Rome, Italy, April 28-30, pp. 135-136, 2009.

[2] A. S. Gilmour, Jr., "Principles of Travelling Wave Tubes", Artech House, Inc, Norwood, MA, USA, 1994.


CST Article "Microfabricated Folded Waveguide for Broadband Traveling Wave Tube Application"
last modified 26. Jun 2013 4:27
printed 25. Apr 2015 12:55, Article ID 473
URL:

All rights reserved.
Without prior written permission of CST, no part of this publication may be reproduced by any method, be stored or transferred into an electronic data processing system, neither mechanical or by any other method.

Feedback

4 of 4 people found this article useful

Did you find this article useful?

Other Articles

Dichroic Filter

Dichroic Filter
The dichroic filter is an example for setting up simulations of frequency selective surfaces. The simulation is performed with CST MICROWAVE STUDIO® and compared to measurements. Read full article..

Environment-Independent Miniature Antennas

Environment-Independent Miniature Antennas Document type
Hubregt J. Visser, PhD, Holst Centre – IMEC-NL Antennas, when brought into close proximity with RF reflective objects or lossy human tissue, will show a degradation in performance. This degradation is visible in the input impedance as a function of frequency and in the radiation pattern, gain and efficiency. In the presentation we will show two examples of miniature antennas designed for on-body use that exhibit a negligible performance degradation when brought near or onto the human body. One of the examples comprises a miniature, curved microstrip patch antenna for application on the wrist, see Figure 1. Here, the ground plane of the patch antenna has been used to form a shielding between antenna and environment. The other example is a CPW printed monopole antenna, embedded in a low-loss dielectric body to contain the fields and thus minimize reactive tuning, see Figure 2. Furthermore the short ground plane of this antenna has been modified to suppress coaxial cable current radiation. In the designs, the human body has been modeled as a curved, layered medium consisting of skin, fat, muscle, bone and, when appropriate, dura, cerebrospinal fluid and brain tissue. The CSTMWS designs, the realized prototypes and the measurement results will be presented. Figure 1: Curved microstrip patch antenna for use on the wrist. Figure 2: Printed monopole antenna in proximity to the human body. Read full article..

EM field distribution and SAR in a Human Head with MRI Coil

EM field distribution and SAR in a Human Head with MRI Coil
CST MICROWAVE STUDIO® (CST MWS) was used to aid in the computational investigation of the transverse B1-field homogeneity and SAR values in a 11.7 T / 500 MHz 4-port driven RF head coil loaded with a high-resolution human model (HUGO based on the Visible Human Project®). The simulations show the expected enhancement of the B-field in the centre of the head compared with the unloaded case and no significant changes in the maximum 1g SAR values between 2-port linear and circular polarizations. This work was carried out by CEA Saclay, France and is summarised in this article with the permssion and courtesy of Xavier Hanus and his colleagues. Read full article..

Design of an Ultra-Wideband High-Power-Microwave Traveling-Wave Antenna

Design of an Ultra-Wideband High-Power-Microwave Traveling-Wave Antenna Document type
In this article we discuss the design and implementation of high-power-microwave (HPM) traveling-wave antenna. The antenna is designed to be driven by a high-power, single-shot signal generator with 1 ns pulse-width at the -3 dB power points, and peak voltage of up to 100 kV. Since the signal generator is equipped with an air-filled coaxial-waveguide output, a coaxial-waveguide to parallel-plates transition was also designed and fabricated. Initial theoretical electrical parameters and characteristics along with physical dimensions of the system were solved and derived using MATLAB[1]. Then, the components comprising the antenna were modeled, solved and optimized using CST STUDIO SUITE®[2]. Using the CAD export capabilities in CST STUDIO SUITE, fabrication models and schematics were produced from the simulation model. The antenna was fabricated and measured results agree with simulation results to a great extent. Read full article..

EMC Simulation in the Design Flow of Modern Electronics

EMC Simulation in the Design Flow of Modern Electronics
In the design process of modern electronics, every product development starts with a schematic and ends with the physical implementation of the device, typically done in copper. Along the way to converting the schematic into a real existing layout however, the designer can fall into numerous possible pitfalls in terms of the EMC performance. In this webinar we will show several examples of EMC countermeasures in modern electronics and good practices for implementing them, as well as highlighting some common mistakes. We will also demonstrate how simulation can predict the EMC performance of typical components like PCBs, enclosures and cables, and compare the simulation results to measurements performed on physical implementations of the structures. Read full article..
Back Back  

Your session has expired. Redirecting you to the login page...