CST

Microfabricated Folded Waveguide for Broadband Traveling Wave Tube Application

As in most other technical areas, microfabrication is becoming more and more popular in the vacuum tube community. The reason is the need for miniaturization when going to higher frequencies. Circuits created by conventional fabrication techniques suffer from fragility. To circumvent this problem the structure suggested and analysed by R. Zheng and X. Chen [1] is dominated by metal and therefore much more robust. 


Structure of the folded waveguide.
Figure 1: Structure of the folded waveguide.

The slow wave structure is realized by a 50 period folded waveguide as shown in figure 1. The structure is fed at the RF input via waveguide ports known from CST MWS. Likewise the obtained output power is recorded at RF output with waveguide ports. The particles are traveling perpendicular to the waveguide as indicated by the arrow in figure 1.


Dispersion diagram of a single period.
Figure 2: Dispersion diagram of a single period.

A cold test simulation of a single period performed with CST MWS Eigenmode solver (see Slow Wave Article) gives the dispersion diagram shown in figure 2 (see also [1]).  The normalized phase velocity in this frequency band is about 0.255. Therefore the particles are emitted from the surface shown in figure 3 with a slightly higher beta of 0.2556 in order to transfer EM power from the electron beam to the RF-structure. The emitted beam current is 50mA.


Particle emission surface.
Figure 3: Particle emission surface.

The input signal is a monofrequent sinus with an input power of 2.5mW and a frequency of 230GHz. The port amplitudes are wave amplitudes and in units sqrt(Power). Therefore the input signal (red) illustrated in figure 4 shows an amplitude of 0.05. The output signal saturates at 480ps with an amplitude of 0.514 which results in a gain of 20.24dB. This agrees quite well to the gain of 20.9dB given by Pierce small signal theory (see page 282 in [2]).

The frequency spectrum of the output signal has a peak as well at 230GHz. The additional ripples are resulting due to a finite simulation time which is in time domain a multiplication with a rectangular pulse. In frequency domain this is equivalent to the convolution with an SI function which is seen in figure 4.


Time signals of RF in and out (left) and frequency spectrum of output signal (right).
Figure 4: Time signals of RF in and out (left) and frequency spectrum of output signal (right).

The particle trajectory is illustrated in figure 5. A zoom into the end section shows very nicely the sections with low and high velocity. This indicates the velocity modulation and the interaction of the beam with the electromagnetic wave which finally amplifies the RF input signal.


Particle trajectory and zoom into end section.
Figure 5: Particle trajectory and zoom into end section.

The small signal analysis has been carried out by R. Zheng and X. Chen [1] for the complete frequency band of interest and compared to Pierce small signal theory. The comparison shows a reasonable agreement with respect to the validity of Pierce theory (see figure 6) which could be violated by space charge effects and electron bunching.


Comparison of CST PS PIC analysis and Pierce small signal theory (courtesy of R. Zheng and X. Chen [1]).
Figure 6: Comparison of CST PS PIC analysis and Pierce small signal theory (courtesy of R. Zheng and X. Chen [1]).

The article shows the cold and hot test simulation of a slow wave structure by means of  CST MWS Eigenmode solver and CST PS PIC solver. The results are in good agreement with theoretical values. Compared to a CST MWS model, which often is already existent after cold test simulations, only slight modifications have to be made to include the particles. The output power is directly provided by waveguide ports known from CST MWS. The signals can conveniently be postprocessed into gain and frequency spectrum inside the CST template based postprocessing.

References:

[1] R. Zheng and X. Chen, "Design and 3-D Simulation of Microfabricated Folded Waveguide for a 220GHz Broadband Travelling-Wave Tube Application", Proceedings of the IVEC 2009, Rome, Italy, April 28-30, pp. 135-136, 2009.

[2] A. S. Gilmour, Jr., "Principles of Travelling Wave Tubes", Artech House, Inc, Norwood, MA, USA, 1994.


CST Article "Microfabricated Folded Waveguide for Broadband Traveling Wave Tube Application"
last modified 26. Jun 2013 4:27
printed 29. Jul 2015 3:28, Article ID 473
URL:

All rights reserved.
Without prior written permission of CST, no part of this publication may be reproduced by any method, be stored or transferred into an electronic data processing system, neither mechanical or by any other method.

Feedback

4 of 4 people found this article useful

Did you find this article useful?

Other Articles

Design und Bewertung einer Hohlleiter-Schlitzantenne (Slotted Waveguide Antenna,SWA) mit EM-Simulation

Design und Bewertung einer Hohlleiter-Schlitzantenne (Slotted Waveguide Antenna,SWA) mit EM-Simulation
SWAs sind für viele Radaranwendungen nützlich. Sie sind leicht, robust und bieten einen hohen Gewinn und eine sehr gute Richtcharakteristik. Dabei sind sie relativ einfach herzustellen. SWAs bestehen aus einem Hohlleiter, dessen Wand durch Schlitze unterbrochen ist. Read full article..

Modeling the susceptibility of enclosures to ESD and the effect of attaching cables

Modeling the susceptibility of enclosures to ESD and the effect of attaching cables
This webcast in the series discusses recent advances in modeling ESD generators using CST STUDIO. Direct transient analysis is used to simulate the ESD test waveforms defined by the IEC 61000-4-2 standard. We demonstrate the importance of modeling the physical geometry of the generator, including the ground strap. We simulate a direct contact discharge to an enclosure and predict the resulting current paths and radiated electromagnetic fields. Finally, we investigate the effect of attaching cables to the enclosure. Read full article..

Dielectric and conductor loss simulation

Dielectric and conductor loss simulation
The drive toward increased integration densities of electronic devices has led to smaller transmission line conductor sizes and structures consisting of multiple lossy dielectrics. At the same time, higher bit-rates of 100 GBits/s, has led to increased loss due to skin-effects. Losses in these types of transmission lines are often difficult to predict due to non-ideal transmission line cross-sections, including surface roughness and edge-shape effects. To develop realistic simulated insertion loss, all insertion loss components need to be considered and accounted for. Dielectric and conductor loss components require careful material parameterization and structure set up. An overview of these parameterizations and set up will be given, including the trace cross-section shape influence on conductor loss, an often overlooked phenomenon. Options for including surface roughness contribution to conductor loss, for both full wave 3D and analytical models, will be explored. Read full article..

Frauscher Sensor Technology designs rail wheel sensors with CST STUDIO SUITE

Frauscher Sensor Technology designs rail wheel sensors with CST STUDIO SUITE Document type
The safety and integrity of the modern rail network is possible thanks to an extensive system of sensors that are constantly reporting the location, speed, direction and state of trains. Frauscher Sensor Technology has developed and manufactured high-quality products in the field of inductive sensor technology since 1987, with a focus on railway signaling and train control systems that are responsible for the safety of rail operations. Read full article..

Simulation of EMI in Hybrid Cabling for Combining Power and Control Signaling

Simulation of EMI in Hybrid Cabling for Combining Power and Control Signaling
An increasing trend in the industry is to combine power and control cables into a single hybrid cable design, reducing the complexity of the system and cost. However, without careful design, high voltage power switching transients may lead to unwanted electromagnetic interference. Typical hybrid cable design parameters may include the separation between conductors, twist rate of twisted pairs, shielding and screen types. This webcast will explore the simulation of hybrid cable design using CST CABLE STUDIO and the prediction of EMI levels. Topics covered will include the modeling of shield transfer impedance, crosstalk and induced common mode currents. Read full article..
Back Back  

Your session has expired. Redirecting you to the login page...