CST

Microfabricated Folded Waveguide for Broadband Traveling Wave Tube Application

As in most other technical areas, microfabrication is becoming more and more popular in the vacuum tube community. The reason is the need for miniaturization when going to higher frequencies. Circuits created by conventional fabrication techniques suffer from fragility. To circumvent this problem the structure suggested and analysed by R. Zheng and X. Chen [1] is dominated by metal and therefore much more robust. 


Structure of the folded waveguide.
Figure 1: Structure of the folded waveguide.

The slow wave structure is realized by a 50 period folded waveguide as shown in figure 1. The structure is fed at the RF input via waveguide ports known from CST MWS. Likewise the obtained output power is recorded at RF output with waveguide ports. The particles are traveling perpendicular to the waveguide as indicated by the arrow in figure 1.


Dispersion diagram of a single period.
Figure 2: Dispersion diagram of a single period.

A cold test simulation of a single period performed with CST MWS Eigenmode solver (see Slow Wave Article) gives the dispersion diagram shown in figure 2 (see also [1]).  The normalized phase velocity in this frequency band is about 0.255. Therefore the particles are emitted from the surface shown in figure 3 with a slightly higher beta of 0.2556 in order to transfer EM power from the electron beam to the RF-structure. The emitted beam current is 50mA.


Particle emission surface.
Figure 3: Particle emission surface.

The input signal is a monofrequent sinus with an input power of 2.5mW and a frequency of 230GHz. The port amplitudes are wave amplitudes and in units sqrt(Power). Therefore the input signal (red) illustrated in figure 4 shows an amplitude of 0.05. The output signal saturates at 480ps with an amplitude of 0.514 which results in a gain of 20.24dB. This agrees quite well to the gain of 20.9dB given by Pierce small signal theory (see page 282 in [2]).

The frequency spectrum of the output signal has a peak as well at 230GHz. The additional ripples are resulting due to a finite simulation time which is in time domain a multiplication with a rectangular pulse. In frequency domain this is equivalent to the convolution with an SI function which is seen in figure 4.


Time signals of RF in and out (left) and frequency spectrum of output signal (right).
Figure 4: Time signals of RF in and out (left) and frequency spectrum of output signal (right).

The particle trajectory is illustrated in figure 5. A zoom into the end section shows very nicely the sections with low and high velocity. This indicates the velocity modulation and the interaction of the beam with the electromagnetic wave which finally amplifies the RF input signal.


Particle trajectory and zoom into end section.
Figure 5: Particle trajectory and zoom into end section.

The small signal analysis has been carried out by R. Zheng and X. Chen [1] for the complete frequency band of interest and compared to Pierce small signal theory. The comparison shows a reasonable agreement with respect to the validity of Pierce theory (see figure 6) which could be violated by space charge effects and electron bunching.


Comparison of CST PS PIC analysis and Pierce small signal theory (courtesy of R. Zheng and X. Chen [1]).
Figure 6: Comparison of CST PS PIC analysis and Pierce small signal theory (courtesy of R. Zheng and X. Chen [1]).

The article shows the cold and hot test simulation of a slow wave structure by means of  CST MWS Eigenmode solver and CST PS PIC solver. The results are in good agreement with theoretical values. Compared to a CST MWS model, which often is already existent after cold test simulations, only slight modifications have to be made to include the particles. The output power is directly provided by waveguide ports known from CST MWS. The signals can conveniently be postprocessed into gain and frequency spectrum inside the CST template based postprocessing.

References:

[1] R. Zheng and X. Chen, "Design and 3-D Simulation of Microfabricated Folded Waveguide for a 220GHz Broadband Travelling-Wave Tube Application", Proceedings of the IVEC 2009, Rome, Italy, April 28-30, pp. 135-136, 2009.

[2] A. S. Gilmour, Jr., "Principles of Travelling Wave Tubes", Artech House, Inc, Norwood, MA, USA, 1994.


CST Article "Microfabricated Folded Waveguide for Broadband Traveling Wave Tube Application"
last modified 26. Jun 2013 4:27
printed 5. Feb 2016 10:52, Article ID 473
URL:

All rights reserved.
Without prior written permission of CST, no part of this publication may be reproduced by any method, be stored or transferred into an electronic data processing system, neither mechanical or by any other method.

Feedback

4 of 4 people found this article useful

Did you find this article useful?

Other Articles

3D EM Modeling of a DDR4 Memory Channel

3D EM Modeling of a DDR4 Memory Channel
The modeling section of the webinar will look at the importance of return path discontinuities. When should we use a 2D approach and when do we need 3D full-wave solver? Can we adopt a "cascaded S-parameter” approach to modeling a channel, where each component is simulated separately, or must we revert to "combined 3D modeling", in which the full channel – controller package, motherboard and DIMM connector – are combined in a single 3D CAD model? Read full article..

Thermal Analysis of a Two-Cavity Dual-Mode Bandpass Filter

Thermal Analysis of a Two-Cavity Dual-Mode Bandpass Filter
The CST EM STUDIO™ Thermal Solver has been applied to simulate the temperature distribution of a dual-mode filter. The current density distribution inside the lossy conductive metals is precomputed by CST MICROWAVE STUDIO® acting as the thermal source. Read full article..

Designing Clean Mobile Electronic Devices – Mobile Phone & Automobile Systems

Designing Clean Mobile Electronic Devices – Mobile Phone & Automobile Systems
Mobile electronic devices have become both more numerous and more compact while at the same time integrating more and more radio frequency (RF) functionality. Multiple transmit and receive systems with different communications protocols and with different antennas are routinely being used for personal communications: voice, data, location services, etc. High speed clock and data lines in devices can radiate and couple to antennas. Modern automobiles can have 10 to 30 antennas at different frequencies and locations for functions ranging from collision avoidance to tire pressure. To make introduction of new products in this environment faster, it is important that the possible couplings between the various systems on one platform can be determined before fabrication and field testing. We will discuss the use of CST STUDIO SUITE to perform EM analysis of a cell phone with multiple antennas and high speed data lines, and of an automobile containing an LTE cell phone, commercial FM, GPS, and commercial VHF & UHF antennas. Read full article..

Multiphysics Approach for a Magnetron and Microwave Oven Design

Multiphysics Approach for a Magnetron and Microwave Oven Design
This webinar will show how the CST STUDIO SUITE® Complete Technology approach can be used to aid the full design path of a Microwave Oven. Read full article..

Multi-Domain Simulation of an Electromechanical Device

Multi-Domain Simulation of an Electromechanical Device
This article is concerned with the modeling of an electromechanical component using an equivalent circuit generated from magnetostatic simulations in CST EM STUDIO®. CST DESIGN STUDIO™ is then used to simulate the coupled electric circuit and mechanical dynamics. A simple Look-Up Table (LUT) approach has been applied for this purpose. The method has been applied to the simulation of a solenoid system. Read full article..
Back Back  

Your session has expired. Redirecting you to the login page...