Microfabricated Folded Waveguide for Broadband Traveling Wave Tube Application

As in most other technical areas, microfabrication is becoming more and more popular in the vacuum tube community. The reason is the need for miniaturization when going to higher frequencies. Circuits created by conventional fabrication techniques suffer from fragility. To circumvent this problem the structure suggested and analysed by R. Zheng and X. Chen [1] is dominated by metal and therefore much more robust. 

Structure of the folded waveguide.
Figure 1: Structure of the folded waveguide.

The slow wave structure is realized by a 50 period folded waveguide as shown in figure 1. The structure is fed at the RF input via waveguide ports known from CST MWS. Likewise the obtained output power is recorded at RF output with waveguide ports. The particles are traveling perpendicular to the waveguide as indicated by the arrow in figure 1.

Dispersion diagram of a single period.
Figure 2: Dispersion diagram of a single period.

A cold test simulation of a single period performed with CST MWS Eigenmode solver (see Slow Wave Article) gives the dispersion diagram shown in figure 2 (see also [1]).  The normalized phase velocity in this frequency band is about 0.255. Therefore the particles are emitted from the surface shown in figure 3 with a slightly higher beta of 0.2556 in order to transfer EM power from the electron beam to the RF-structure. The emitted beam current is 50mA.

Particle emission surface.
Figure 3: Particle emission surface.

The input signal is a monofrequent sinus with an input power of 2.5mW and a frequency of 230GHz. The port amplitudes are wave amplitudes and in units sqrt(Power). Therefore the input signal (red) illustrated in figure 4 shows an amplitude of 0.05. The output signal saturates at 480ps with an amplitude of 0.514 which results in a gain of 20.24dB. This agrees quite well to the gain of 20.9dB given by Pierce small signal theory (see page 282 in [2]).

The frequency spectrum of the output signal has a peak as well at 230GHz. The additional ripples are resulting due to a finite simulation time which is in time domain a multiplication with a rectangular pulse. In frequency domain this is equivalent to the convolution with an SI function which is seen in figure 4.

Time signals of RF in and out (left) and frequency spectrum of output signal (right).
Figure 4: Time signals of RF in and out (left) and frequency spectrum of output signal (right).

The particle trajectory is illustrated in figure 5. A zoom into the end section shows very nicely the sections with low and high velocity. This indicates the velocity modulation and the interaction of the beam with the electromagnetic wave which finally amplifies the RF input signal.

Particle trajectory and zoom into end section.
Figure 5: Particle trajectory and zoom into end section.

The small signal analysis has been carried out by R. Zheng and X. Chen [1] for the complete frequency band of interest and compared to Pierce small signal theory. The comparison shows a reasonable agreement with respect to the validity of Pierce theory (see figure 6) which could be violated by space charge effects and electron bunching.

Comparison of CST PS PIC analysis and Pierce small signal theory (courtesy of R. Zheng and X. Chen [1]).
Figure 6: Comparison of CST PS PIC analysis and Pierce small signal theory (courtesy of R. Zheng and X. Chen [1]).

The article shows the cold and hot test simulation of a slow wave structure by means of  CST MWS Eigenmode solver and CST PS PIC solver. The results are in good agreement with theoretical values. Compared to a CST MWS model, which often is already existent after cold test simulations, only slight modifications have to be made to include the particles. The output power is directly provided by waveguide ports known from CST MWS. The signals can conveniently be postprocessed into gain and frequency spectrum inside the CST template based postprocessing.


[1] R. Zheng and X. Chen, "Design and 3-D Simulation of Microfabricated Folded Waveguide for a 220GHz Broadband Travelling-Wave Tube Application", Proceedings of the IVEC 2009, Rome, Italy, April 28-30, pp. 135-136, 2009.

[2] A. S. Gilmour, Jr., "Principles of Travelling Wave Tubes", Artech House, Inc, Norwood, MA, USA, 1994.

CST Article "Microfabricated Folded Waveguide for Broadband Traveling Wave Tube Application"
last modified 26. Jun 2013 4:27
printed 1. Dec 2015 1:11, Article ID 473

All rights reserved.
Without prior written permission of CST, no part of this publication may be reproduced by any method, be stored or transferred into an electronic data processing system, neither mechanical or by any other method.


4 of 4 people found this article useful

Did you find this article useful?

Other Articles

RJ45 Interconnect Signal Integrity

RJ45 Interconnect Signal Integrity
An RJ45 connector model, imported from Pro/E®, is simulated in CST MICROWAVE STUDIO®. The time domain waveforms are compared to TDR measurements. Model and results courtesy of North East Systems Associates (NESA). Read full article..

Electroquasistatic Simulation of a High Voltage Insulator

Electroquasistatic Simulation of a High Voltage Insulator
This article demonstrates the application of the CST EM STUDIO™ (CST EMS) electroquasistatic (EQS) solver to the simulation of a high voltage insulator. It also demonstrates the difference between the results obtained from the EQS Solver and Electro-Static Solver. Read full article..

Integrated Antenna Design for a GSM Tracking Device

Integrated Antenna Design for a GSM Tracking Device
A common strategy when designing an electronic communication device is to use an off-the-shelf antenna. Although the ease with which such antennas can be obtained is a certain benefit, the designer is limited to commercially available antennas which may not be of the right shape for the application, and when purchased in bulk, could become quite costly. In this webinar we aim to illustrate, through demonstration of a real world example, how an existing chip antenna on a GSM tracking device designed to monitor the acceleration (and thus level of distress) of sheep, can be replaced by an embedded, integrated antenna. The final design shows improved antenna performance and communication range while adhering to the technical and spatial requirements. In addition, its planar nature allows it to be integrated with the existing PCB layout, resulting in reduced manufacturing and assembly time and costs. The webinar will show how the design capabilities of Antenna Magus, a searchable database of antennas, can be combined with the full-wave 3D electromagnetic simulation tools in CST STUDIO SUITE to create an embedded design, where full coupling in a complex environment can be taken into account Read full article..

Introduction to MIMO and its advantages for mitigating multipath in wireless deployments

Introduction to MIMO and its advantages for mitigating multipath in wireless deployments Document type
K. Carrigan, Senior Systems Engineer, U.S. Navy (NSWC Dahlgren), & D. Johns, CST of America. Video of a webinar presentation (Running time: 32 min). Read full article..

RFID Reader-Coil, 13.56 MHz

RFID Reader-Coil, 13.56 MHz
Radio Frequency Identification Systems (RFID) are widely used and allow advanced solutions for a variety of applications in the area of authentication, ticketing, access control, supply management, parking, payment, vending,etc. The example presented here is a RFID Readercoil "P81" from Legic Ident Systems and was modeled and solved using the frequency domain solver of CST MICROWAVE STUDIO® (CST MWS). The sensitivity of the computed complex input impedance with respect to substrate tolerances is computed and was compared to measurement data. Read full article..
Back Back  

Your session has expired. Redirecting you to the login page...