CST

Periodic Eigenmode Simulation of a Travelling Wave Tube

This example demonstrates an eigenmode calculation using periodic boundaries in z-direction. The phase shift of the periodic boundary is defined as a parameter which is swept from 5 degrees to 175 degrees with a step size of ten degrees. CST MWS's Eigenmode solver is ideal for this task.


Geometry reduced to a single helix turn
Figure 1: Geometry reduced to a single helix turn

The frequency range is defined up to 10 GHz. The boundary conditions are set to "electric" except for the two boundary conditions in the z direction, which are defined as "periodic" in order to model the periodicity of the helix. A parameter "phase" is assigned to the periodic boundary, so that the phase shift can be used in a parameter sweep.


E, H fields and surface currents obtained from the periodic eigenmode solution
Figure 2: E, H fields and surface currents obtained from the periodic eigenmode solution

All Fields for periodic phase shift may be plotted as in figure 2 where the E and H Fields are shown.


Dispersion characteristics obtained from parameter sweep of the phase
Figure 3: Dispersion characteristics obtained from parameter sweep of the phase

Figure 3 shows the dispersion curves obtained from the parameter sweep via post-processing templates. The phase velocity is shown here as a function of  frequency. The eigenmode solver delivers any aribitrary number of desired modes, 3 of which are shown in the plot.


Pierce Impedance extracted via template-based post-processing of the parameter sweep results
Figure 4: Pierce Impedance extracted via template-based post-processing of the parameter sweep results

Figure 4 shows the Pierce Impedance obtained as a post-processing step. The powerflow in the tube is also an additional post-processing quantity that may be calculated.


CST Article "Periodic Eigenmode Simulation of a Travelling Wave Tube"
last modified 30. Apr 2013 9:56
printed 25. Apr 2015 8:14, Article ID 123
URL:

All rights reserved.
Without prior written permission of CST, no part of this publication may be reproduced by any method, be stored or transferred into an electronic data processing system, neither mechanical or by any other method.

Feedback

6 of 8 people found this article useful

Did you find this article useful?

Other Articles

EMI from Multi-Gigabit SerDes Differential Pairs

EMI from Multi-Gigabit SerDes Differential Pairs Document type
P. Sochoux, Cisco Video of an Innovations 2009 workshop series presentation. Read full article..

C-Band On-Axis Coupled Standing Wave Linear Accelerator

C-Band On-Axis Coupled Standing Wave Linear Accelerator
Linear Accelerators (Linacs) are widely employed in accelerator facilities. Linear acceleration is the method of choice for light particles as synchrotron radiation effects limit the usability of circular accelerators for these particles. Industrial applications require compact linacs for the acceleration of electrons with target energy in the range between 1 and 25 MeV. CST MWS and PS can be used to investigate the high frequency behaviour of linac structures as well as the interaction between particles and the accelerating field. Read full article..

State-Space modeling and simulation of a saturated core fault current limiter

State-Space modeling and simulation of a saturated core fault current limiter
This article demonstrates the ability in CST EM STUDIO® to simulate a fault current limiter. Two methods are shown, one based on a direct transient simulation at EM solver level, the other on the generation of a non-linear equivalent circuit from FE magnetostatic simulation results. The equivalent circuit, ECE, in this case is exported for use in Synopsys® Saber. In both simulations, the assumption has been made that the core is laminated and, as a result, eddy currents are suppressed. Such equivalent circuits are straightfoward to generate and are extremely efficient for use in circuit- and system-Level simulation. In large and complex power systems, a number of ECEs of system components such as transformers, generators and current limiters. Read full article..

Microstrip Patch Array Design

Microstrip Patch Array Design
This article explains the design process for a planar microstrip patch array for WLAN frequencies using the circuit and full-wave 3D solvers and optimization tools in CST STUDIO SUITE®. The goal in this case is to design an array with high directivity, low cost and low sidelobes, exhibiting a good impedance matching in the frequency range 5.18 – 5.85 GHz. The same approach can also be used to design other types of array by using a different radiator or array layout. Read full article..

Design of an Ultra-Wideband High-Power-Microwave Traveling-Wave Antenna

Design of an Ultra-Wideband High-Power-Microwave Traveling-Wave Antenna Document type
In this article we discuss the design and implementation of high-power-microwave (HPM) traveling-wave antenna. The antenna is designed to be driven by a high-power, single-shot signal generator with 1 ns pulse-width at the -3 dB power points, and peak voltage of up to 100 kV. Since the signal generator is equipped with an air-filled coaxial-waveguide output, a coaxial-waveguide to parallel-plates transition was also designed and fabricated. Initial theoretical electrical parameters and characteristics along with physical dimensions of the system were solved and derived using MATLAB[1]. Then, the components comprising the antenna were modeled, solved and optimized using CST STUDIO SUITE®[2]. Using the CAD export capabilities in CST STUDIO SUITE, fabrication models and schematics were produced from the simulation model. The antenna was fabricated and measured results agree with simulation results to a great extent. Read full article..
Back Back  

Your session has expired. Redirecting you to the login page...