CST

Periodic Eigenmode Simulation of a Travelling Wave Tube

This example demonstrates an eigenmode calculation using periodic boundaries in z-direction. The phase shift of the periodic boundary is defined as a parameter which is swept from 5 degrees to 175 degrees with a step size of ten degrees. CST MWS's Eigenmode solver is ideal for this task.


Geometry reduced to a single helix turn
Figure 1: Geometry reduced to a single helix turn

The frequency range is defined up to 10 GHz. The boundary conditions are set to "electric" except for the two boundary conditions in the z direction, which are defined as "periodic" in order to model the periodicity of the helix. A parameter "phase" is assigned to the periodic boundary, so that the phase shift can be used in a parameter sweep.


E, H fields and surface currents obtained from the periodic eigenmode solution
Figure 2: E, H fields and surface currents obtained from the periodic eigenmode solution

All Fields for periodic phase shift may be plotted as in figure 2 where the E and H Fields are shown.


Dispersion characteristics obtained from parameter sweep of the phase
Figure 3: Dispersion characteristics obtained from parameter sweep of the phase

Figure 3 shows the dispersion curves obtained from the parameter sweep via post-processing templates. The phase velocity is shown here as a function of  frequency. The eigenmode solver delivers any aribitrary number of desired modes, 3 of which are shown in the plot.


Pierce Impedance extracted via template-based post-processing of the parameter sweep results
Figure 4: Pierce Impedance extracted via template-based post-processing of the parameter sweep results

Figure 4 shows the Pierce Impedance obtained as a post-processing step. The powerflow in the tube is also an additional post-processing quantity that may be calculated.


CST Article "Periodic Eigenmode Simulation of a Travelling Wave Tube"
last modified 30. Apr 2013 9:56
printed 23. Jul 2016 4:56, Article ID 123
URL:

All rights reserved.
Without prior written permission of CST, no part of this publication may be reproduced by any method, be stored or transferred into an electronic data processing system, neither mechanical or by any other method.

Feedback

9 of 13 people found this article useful

Did you find this article useful?

Other Articles

CST PARTICLE STUDIO Simulation of a Depressed Collector

CST PARTICLE STUDIO Simulation of a Depressed Collector
A multi-stage depressed collector for the "Rijnhuizen" Fusion Free-Electron Maser (FEM) is simulated with CST PARTICLE STUDIO™. The results are reproduced with permission of Pulsar Physics. See also M.J. de Loos, S.B. van der Geer, Pulsar Physics, Nucl. Instr. and Meth. in Phys. Res. B, Vol 139, 1997. Read full article..

Characterization of Photonic Structures with CST MICROWAVE STUDIO

Characterization of Photonic Structures with CST MICROWAVE STUDIO Document type
Stefan Prorok, Hamburg University of Technology We present an overview of our current research activities in silicon photonics and thermal barrier coatings. Doing so, we will comment on how CST Microwave Studio can be used to design strip waveguides, micro ring resonators, as well as 2-D and 3-D photonic crystal structures. Particularly we will concentrate on the discussion of photonic crystal micro cavities which can be used as electro-optic modulators. It will be shown that MWS provides all the functionality to optimize and characterize optical micro cavities. The appearance of resonant modes is adjusted through eigenmode calculation of the photonic crystal waveguide modes. Time domain simulation with discrete port excitation is applied to calculate the intrinsic Q-factor of the cavity. Waveguide ports are used to model experimental conditions of excitation with strip waveguide modes. Field monitors help to understand the mechanism of energy loss from the cavity. The simulation results are compared to measurements on fabricated structures. As possible application we will show a hybrid silicon organic hetero structure cavity for GHz electro-optic modulation. Read full article..

Designing Building Structures for Protection against EMP and Lightning

Designing Building Structures for Protection against EMP and Lightning
This article will explore the use of electromagnetic simulation when hardening facilities against EMP and lightning. EMP is a high-intensity burst of electromagnetic energy that can potentially cause major disruption to vital infrastructure such as telecommunications, electrical power, banking and finance, emergency services, medical facilities, transportation, food and water supply. Lightning can cause significant damage by directly striking a building, when metallic structures such as electrical wiring provide return current flow in an attempt to equalize potentials. It is therefore essential to protect or “harden” critical facilities by stringent electromagnetic design, including shielding to block incident EMP fields, careful treatment of points of entry (POE) and diversion of lightning currents using down-conductors. This article shows how a simulation of the performance of EMP protection measures at the point of entry, such as filtering and clamping, can be set up and carried out. The simulation of a lightning strike to a building structure is also demonstrated, to show how the induced current return paths can be visualized in order to characterize the possible effect of the lightning strike on systems inside the building. This includes an investigation of cable system positioning inside the building and the prediction of induced shield and internal load currents and the analysis of lightning protection system (LPS), taking into account the effect of down-conductor type and grounding impedance. Read full article..

Modeling Double Negative Materials with CST DESIGN STUDIO™

Modeling Double Negative Materials with CST DESIGN STUDIO™
This paper describes how Double Negative Materials (DNG) material can be simulated in CST MICROWAVE STUDIO® (CST MWS) by using dispersive materials. Read full article..

Electrostatic Discharge Modelling

Electrostatic Discharge Modelling
This article describes how CST MICROWAVE STUDIO® may be used for performing simulative tests of the immunity of devices to electrostatic discharge (ESD). A user defined input signal may be combined with an optimised model geometry to closely model the behaviour of a real ESD generator. Read full article..
Back Back  

Your session has expired. Redirecting you to the login page...