CST

Photonic Crystal Simulation

Photonic crystals are periodic structures that are designed to affect the motion of photons in a similar way that periodicity of a semiconductor crystal affects the motion of electrons. The non-existence of propagating EM modes inside the structures at certain frequencies introduces unique optical phenomena such as low-loss-waveguides, omni-directional mirrors and others. The part of the spectrum for which wave propagation is not possible is called the optical band-gap.  The underlying physical phenomenon is based on diffraction. Therefore, the lattice constant of the photonic crystal structure has to be in the same length-scale as half the wavelength of the electromagnetic wave. Figure 1 shows a one dimensional periodic structure which is investigated by using the transient solver of CST MICROWAVE STUDIO® (CST MWS).


1 dimensional periodic structure
Figure 1: 1 dimensional periodic structure

The rods are made from GaAS with refractive index of 3.4 and with an edge length of about 180 nm. The lattice spacing between the rods is 760 nm. As a first step, the transmission of a plane wave through this crystal is simulated.


single column of the array
Figure 2: single column of the array

By using appropriate boundary and symmetry conditions it is sufficient to calculate a single column of this array as shown in Figure 2. In this case, the structure is driven by a waveguide port. Due to the magnetic and electric symmetry planes, the excitation mode is a  normally incident plane wave.


Transmisson vs. wavelength
Figure 3: Transmisson vs. wavelength

Figure 3 shows the transmission through the structure. Between 1400 and 2200 nm the transmission is zero. In this bandgap region no wave propagation in possible.


Wave Propagation at frequencies below the band gap
Figure 4: Wave Propagation at frequencies below the band gap

Figures 4-6 shows the propagation of a plane wave at normal incident for at different frequencies.


Wave propagation at frequencies in the band gap
Figure 5: Wave propagation at frequencies in the band gap


Wave Propagation at frequencies above the band gap
Figure 6: Wave Propagation at frequencies above the band gap

The information obtained about the photonic band gap can be used to design optical devices. Figure 7 shows the periodic PBG structure as described above. A line defect is introduced and the structure is excited with a electromagnetic wave at band gap frequencies. The wave can only propagate inside the line defect.


Photonic Crystal with line defect
Figure 7: Photonic Crystal with line defect

Finally, Figure 8 shows the wave propagation inside the Photonic crystal with a bent defect. Again, the structure is driven with a time harmonic signal. The signal frequency is inside band gap of the crystal. Consequently, the wave propagates inside bend defect.


Photonic crystal with a bend defect
Figure 8: Photonic crystal with a bend defect

This article demonstrates the possibilities to model photonic crystals with CST MWS by using the transient solver. The general characterization would also be possible with the Frequency Domain and Eigenmode Solver of CST MWS by applying periodic boundary conditions.


CST Article "Photonic Crystal Simulation"
last modified 15. Jan 2007 5:42
printed 4. Aug 2015 5:17, Article ID 296
URL:

All rights reserved.
Without prior written permission of CST, no part of this publication may be reproduced by any method, be stored or transferred into an electronic data processing system, neither mechanical or by any other method.

Feedback

25 of 31 people found this article useful

Did you find this article useful?

Other Articles

A Small, Efficient, Linear-polarized Omni-directional Antenna

A Small, Efficient, Linear-polarized Omni-directional Antenna
Nearly full-sized performance from a spherical coil only 1/6th as long in the E-plane normal direction as a half-wave dipole antenna. Read full article..

New simulation workflows for predicting radiated emissions

New simulation workflows for predicting radiated emissions
In this video powerful new workflows for reliably predicting radiated emissions from electronics systems will be discussed. We start by importing a complex PCB model into CST PCB STUDIO and applying new EMC rules checking algorithms to rapidly identify potential weaknesses in the design. Critical nets, planes and vias are then analyzed to determine the differential mode (DM) to common mode (CM) conversion caused by driver skew and line imbalance. Finally, the resulting transient noise waveforms are injected into a 3D model of the connector/cable assembly and radiated emissions predicted. Important features of a typical anechoic chamber test are represented in the model using external ground plane reflections and cylindrical scanning to detect the peak emissions. Read full article..

Microfabricated Folded Waveguide for Broadband Traveling Wave Tube Application

Microfabricated Folded Waveguide for Broadband Traveling Wave Tube Application
Microfabrication becomes also in the vacuum tube community more and more popular. The reason is the need for miniaturization when going to higher frequencies. Circuits created by conventional fabrication techniques are not robust enough. Therefore a microfabricated folded waveguide for 220GHz has been designed and analysed by means of 3D simulation using the Particle in Cell (PIC) solver of CST PARTICLE STUDIO®. Read full article..

Photonic Band Gap Structure for a Particle Accelerator

Photonic Band Gap Structure for a Particle Accelerator
This application has been succesfully simulated using the powerful Eigenmode Solver in CST MICROWAVE STUDIO® with the aid of the Modal Analysis Module. Read full article..

Advanced Modelling and Measurement of Wideband Horn Antennas

Advanced Modelling and Measurement of Wideband Horn Antennas
This paper presents the excellent correlation of measurement results to the numerical calculations of a SATIMO dual-ridge horn antenna which include the directivity, boresight gain, and return loss vs. frequency. The structure is electrically large which lends itself, as a result of its efficient memory utilisation, to the CST MICROWAVE STUDIO® (CST MWS) Time Domain Solver. Broadband, high resolution gain results can be obtained within a single run with as many as 100 farfield monitors being defined. The results are presented with the courtesy and permission of SATIMO, Italy. Read full article..
Back Back  

Your session has expired. Redirecting you to the login page...