CST

Photonic Crystal Simulation

Photonic crystals are periodic structures that are designed to affect the motion of photons in a similar way that periodicity of a semiconductor crystal affects the motion of electrons. The non-existence of propagating EM modes inside the structures at certain frequencies introduces unique optical phenomena such as low-loss-waveguides, omni-directional mirrors and others. The part of the spectrum for which wave propagation is not possible is called the optical band-gap.  The underlying physical phenomenon is based on diffraction. Therefore, the lattice constant of the photonic crystal structure has to be in the same length-scale as half the wavelength of the electromagnetic wave. Figure 1 shows a one dimensional periodic structure which is investigated by using the transient solver of CST MICROWAVE STUDIO® (CST MWS).


1 dimensional periodic structure
Figure 1: 1 dimensional periodic structure

The rods are made from GaAS with refractive index of 3.4 and with an edge length of about 180 nm. The lattice spacing between the rods is 760 nm. As a first step, the transmission of a plane wave through this crystal is simulated.


single column of the array
Figure 2: single column of the array

By using appropriate boundary and symmetry conditions it is sufficient to calculate a single column of this array as shown in Figure 2. In this case, the structure is driven by a waveguide port. Due to the magnetic and electric symmetry planes, the excitation mode is a  normally incident plane wave.


Transmisson vs. wavelength
Figure 3: Transmisson vs. wavelength

Figure 3 shows the transmission through the structure. Between 1400 and 2200 nm the transmission is zero. In this bandgap region no wave propagation in possible.


Wave Propagation at frequencies below the band gap
Figure 4: Wave Propagation at frequencies below the band gap

Figures 4-6 shows the propagation of a plane wave at normal incident for at different frequencies.


Wave propagation at frequencies in the band gap
Figure 5: Wave propagation at frequencies in the band gap


Wave Propagation at frequencies above the band gap
Figure 6: Wave Propagation at frequencies above the band gap

The information obtained about the photonic band gap can be used to design optical devices. Figure 7 shows the periodic PBG structure as described above. A line defect is introduced and the structure is excited with a electromagnetic wave at band gap frequencies. The wave can only propagate inside the line defect.


Photonic Crystal with line defect
Figure 7: Photonic Crystal with line defect

Finally, Figure 8 shows the wave propagation inside the Photonic crystal with a bent defect. Again, the structure is driven with a time harmonic signal. The signal frequency is inside band gap of the crystal. Consequently, the wave propagates inside bend defect.


Photonic crystal with a bend defect
Figure 8: Photonic crystal with a bend defect

This article demonstrates the possibilities to model photonic crystals with CST MWS by using the transient solver. The general characterization would also be possible with the Frequency Domain and Eigenmode Solver of CST MWS by applying periodic boundary conditions.


CST Article "Photonic Crystal Simulation"
last modified 15. Jan 2007 5:42
printed 28. Aug 2016 10:35, Article ID 296
URL:

All rights reserved.
Without prior written permission of CST, no part of this publication may be reproduced by any method, be stored or transferred into an electronic data processing system, neither mechanical or by any other method.

Feedback

39 of 47 people found this article useful

Did you find this article useful?

Other Articles

Nanophotonics and integrated optics - Photonic Crystal Cavities

Nanophotonics and integrated optics - Photonic Crystal Cavities Document type
This whitepaper gives a general overview on different concepts of photonic crystal cavities. Important figures such as the transmission, the mode volume and the quality factor are discussed. The presented information will help the reader to decide which type of photonic crystal cavities will be most suited for the application in view. A design example for a WDM channel filter is given in order to illustrate the design process for a photonic crystal cavity. Furthermore two experimental examples from recent research are shown to demonstrate the wide range of applications in which photonic crystal cavities could be used. Read full article..

Reconfigurable Antenna Simulation

Reconfigurable Antenna Simulation
Packing more functionality into ever smaller spaces has made reconfigurable antennas very attractive for telecommunications engineers, especially given the ever expanding landscape of cellular network standards. As with any other antenna application, virtual prototyping is extremely important for accelerating the product design cycle and reducing time to market. This webinar will introduce the concepts involved in making antennas reconfigurable – for example tunable materials, mechanical reconfigurability, and RF MEMS and PIN diode switches – and will address how these can be simulated efficiently using the advanced tools in CST STUDIO SUITE 2011. Read full article..

Ultra-Wide-Band Printed Circular Dipole Antenna

Ultra-Wide-Band Printed Circular Dipole Antenna
A UWB dipole antenna composed of circular arms containing a special feeding system is modeled simulated using CST MICROWAVE STUDIO®, the results of which are presented in this article. The design, developed by IETR-INSA / Thomson R&D France, shows good broadband matching (3-10 GHz) and an omnidiectional radiation pattern up to 6 GHz. Read full article..

EM Simulation of a 6.7 GHz Coaxial Bragg Reflector

EM Simulation of a 6.7 GHz Coaxial Bragg Reflector
The Bragg Reflector implemented in the coaxial technology is an example for setting up simulations of periodic structures. The simulation is performed with CST MICROWAVE STUDIO® and compared to measurements. Read full article..

3D EM simulation of mixed analog / digital multilayer PCB

3D EM simulation of mixed analog / digital multilayer PCB
This article describes the use of CST MICROWAVE STUDIO® (CST MWS) to solve a coupling problem in a mixed analog – digital multilayer PCB card. Courtesy and permission of Alvarion, Ltd, Tel-Aviv, Israel. This example gives an insight into the usefulness of simulation of problems that cannot be investigated easily via measurement and allows the engineer to carry out virtual experiments as demonstrated here with the cutting of the signal trace. Experiments may show the presence of a particular problem but not its location. Even when the problem has been located, further prototypes and experiments are costly and time-consuming. CST MWS offers a straightforward workflow for the set-up and simulation of such problems via its advanced user-interface and EDA interfaces. Read full article..
Back Back  

Your session has expired. Redirecting you to the login page...