Photonic Crystal Simulation

Photonic crystals are periodic structures that are designed to affect the motion of photons in a similar way that periodicity of a semiconductor crystal affects the motion of electrons. The non-existence of propagating EM modes inside the structures at certain frequencies introduces unique optical phenomena such as low-loss-waveguides, omni-directional mirrors and others. The part of the spectrum for which wave propagation is not possible is called the optical band-gap.  The underlying physical phenomenon is based on diffraction. Therefore, the lattice constant of the photonic crystal structure has to be in the same length-scale as half the wavelength of the electromagnetic wave. Figure 1 shows a one dimensional periodic structure which is investigated by using the transient solver of CST MICROWAVE STUDIO® (CST MWS).

1 dimensional periodic structure
Figure 1: 1 dimensional periodic structure

The rods are made from GaAS with refractive index of 3.4 and with an edge length of about 180 nm. The lattice spacing between the rods is 760 nm. As a first step, the transmission of a plane wave through this crystal is simulated.

single column of the array
Figure 2: single column of the array

By using appropriate boundary and symmetry conditions it is sufficient to calculate a single column of this array as shown in Figure 2. In this case, the structure is driven by a waveguide port. Due to the magnetic and electric symmetry planes, the excitation mode is a  normally incident plane wave.

Transmisson vs. wavelength
Figure 3: Transmisson vs. wavelength

Figure 3 shows the transmission through the structure. Between 1400 and 2200 nm the transmission is zero. In this bandgap region no wave propagation in possible.

Wave Propagation at frequencies below the band gap
Figure 4: Wave Propagation at frequencies below the band gap

Figures 4-6 shows the propagation of a plane wave at normal incident for at different frequencies.

Wave propagation at frequencies in the band gap
Figure 5: Wave propagation at frequencies in the band gap

Wave Propagation at frequencies above the band gap
Figure 6: Wave Propagation at frequencies above the band gap

The information obtained about the photonic band gap can be used to design optical devices. Figure 7 shows the periodic PBG structure as described above. A line defect is introduced and the structure is excited with a electromagnetic wave at band gap frequencies. The wave can only propagate inside the line defect.

Photonic Crystal with line defect
Figure 7: Photonic Crystal with line defect

Finally, Figure 8 shows the wave propagation inside the Photonic crystal with a bent defect. Again, the structure is driven with a time harmonic signal. The signal frequency is inside band gap of the crystal. Consequently, the wave propagates inside bend defect.

Photonic crystal with a bend defect
Figure 8: Photonic crystal with a bend defect

This article demonstrates the possibilities to model photonic crystals with CST MWS by using the transient solver. The general characterization would also be possible with the Frequency Domain and Eigenmode Solver of CST MWS by applying periodic boundary conditions.

CST Article "Photonic Crystal Simulation"
last modified 15. Jan 2007 5:42
printed 31. Mar 2015 7:00, Article ID 296

All rights reserved.
Without prior written permission of CST, no part of this publication may be reproduced by any method, be stored or transferred into an electronic data processing system, neither mechanical or by any other method.


22 of 28 people found this article useful

Did you find this article useful?

Other Articles

From Layout to Eye Diagram CST STUDIO SUITE and the EDA Workflow

From Layout to Eye Diagram CST STUDIO SUITE and the EDA Workflow Document type
Ensuring good Signal Integrity (SI) in high-speed communication PCBs is becoming more challenging as layouts become more complex, the number of layers increases and the boards get smaller. A full-wave three dimensional (3D) electromagnetic simulator can be used to simulate and visualize the propagation of electromagnetic fields across PCBs. This article will describe how CST STUDIO SUITE® can be successfully used to characterize the response of high-speed channels, and how typical SI results such as S-parameters, Time Domain Reflectometry (TDR) data and eye diagrams can be numerically calculated to predict the response of a channel. The article will also discuss how to modify layouts in order to improve channel performance, and provide some design guidelines. Read full article..

Plane Wave Interactions with a Dielectric Half-Space at 60 THz

Plane Wave Interactions with a Dielectric Half-Space at 60 THz
In this article, CST MICROWAVE STUDIO® is used to illuminate an infinite dielectric half-space with a uniform plane wave and the reflection and transmission quantities are obtained. This problem has an analytical solution which serves to validate the simulation. The same procedure is then applied to a more generalized geometry which lacks a known analytical solution. Read full article..

Simulation and Construction of Body Coil substitute at 7T Whole Body MRI-System with Travelling Wave Concept

Simulation and Construction of Body Coil substitute at 7T Whole Body MRI-System with Travelling Wave Concept Document type
Tim Herrmann, Johannes Mallow, OvG University Magdeburg Magnetic resonance imaging (MRI) is one of the most important non-invasive examination methods in the modern medicine. To raise up examine possibilities, MRI systems with more powerful magnetic fields are constituted. The standard high-field whole body (1.5T-3T) MRI Systems (Fig. 1) are using a body coil for the excitation. MRI at ultra-high-field (UHF) requires different Tx-coils for excitation of different body parts since the construction of one large body coil, similar to those at lower fields, is to difficult. Moreover, at 7T B1 is inhomogeneous as the RF-wave length within the object is smaller than the object extensions. While in RF-coils the usable B1-field is restricted to dimensions and geometry of the RF-coil itself, with the new travelling wave concept, described by Brunner [1], the usable B1-field is restricted to the dimensions of the waveguide (RF-shield) only. Thus the MR travelling wave concept allows excitation of large volumes depending on the length of the RF-shield. For an antenna with a frequency of 297MHz the approximate wavelength is about 1m. Thus the RF-shield of the gradient coil with a diameter of 64cm can be used as a waveguide, because of the cut-off frequency. The cut-off frequency is the minimum frequency where a wave fits into the waveguide without damping. This study examines the use of the travelling wave concept as an efficient body coil replacement in UHF MRI-System with the support simulations in CST Microwave Studio 2009 and measurements. Therefore two different types of antennas have been simulated and produced. The B1-field distribution of a dipole and a patch antenna where simulated and compared with B1-field measurements in a 7T MRI System. The efficiency compared to a 1.5T body coil was investigated. Further research goals are to create biological models based on anatomical MRI-Dataset for use in field-simulation software with dynamic thermal solver for more realistic SAR calculation. However the remaining problems of exposing sensitive body parts, such as the human head by increased SAR needs to be solved for next generation UHF MRI-Systems. Read full article..

3D EM simulation of mixed analog / digital multilayer PCB

3D EM simulation of mixed analog / digital multilayer PCB
This article describes the use of CST MICROWAVE STUDIO® (CST MWS) to solve a coupling problem in a mixed analog – digital multilayer PCB card. Courtesy and permission of Alvarion, Ltd, Tel-Aviv, Israel. This example gives an insight into the usefulness of simulation of problems that cannot be investigated easily via measurement and allows the engineer to carry out virtual experiments as demonstrated here with the cutting of the signal trace. Experiments may show the presence of a particular problem but not its location. Even when the problem has been located, further prototypes and experiments are costly and time-consuming. CST MWS offers a straightforward workflow for the set-up and simulation of such problems via its advanced user-interface and EDA interfaces. Read full article..

RF Breakdown Analysis in Space Applications

RF Breakdown Analysis in Space Applications Document type
Devices in the output section of a satellite payload, including filters and multiplexers are subject to high RF power. This could lead to RF breakdown, which may render the specific device useless and, in the end, degrades the reliability of the satellite. Therefore all space high power devices have to be analyzed with regards to their breakdown behavior. This application note shows how CST STUDIO SUITE® and SPARK3D® can be used to investigate these effects via simulation. Read full article..
Back Back  

Your session has expired. Redirecting you to the login page...