Photonic Crystal Simulation

Photonic crystals are periodic structures that are designed to affect the motion of photons in a similar way that periodicity of a semiconductor crystal affects the motion of electrons. The non-existence of propagating EM modes inside the structures at certain frequencies introduces unique optical phenomena such as low-loss-waveguides, omni-directional mirrors and others. The part of the spectrum for which wave propagation is not possible is called the optical band-gap.  The underlying physical phenomenon is based on diffraction. Therefore, the lattice constant of the photonic crystal structure has to be in the same length-scale as half the wavelength of the electromagnetic wave. Figure 1 shows a one dimensional periodic structure which is investigated by using the transient solver of CST MICROWAVE STUDIO® (CST MWS).

1 dimensional periodic structure
Figure 1: 1 dimensional periodic structure

The rods are made from GaAS with refractive index of 3.4 and with an edge length of about 180 nm. The lattice spacing between the rods is 760 nm. As a first step, the transmission of a plane wave through this crystal is simulated.

single column of the array
Figure 2: single column of the array

By using appropriate boundary and symmetry conditions it is sufficient to calculate a single column of this array as shown in Figure 2. In this case, the structure is driven by a waveguide port. Due to the magnetic and electric symmetry planes, the excitation mode is a  normally incident plane wave.

Transmisson vs. wavelength
Figure 3: Transmisson vs. wavelength

Figure 3 shows the transmission through the structure. Between 1400 and 2200 nm the transmission is zero. In this bandgap region no wave propagation in possible.

Wave Propagation at frequencies below the band gap
Figure 4: Wave Propagation at frequencies below the band gap

Figures 4-6 shows the propagation of a plane wave at normal incident for at different frequencies.

Wave propagation at frequencies in the band gap
Figure 5: Wave propagation at frequencies in the band gap

Wave Propagation at frequencies above the band gap
Figure 6: Wave Propagation at frequencies above the band gap

The information obtained about the photonic band gap can be used to design optical devices. Figure 7 shows the periodic PBG structure as described above. A line defect is introduced and the structure is excited with a electromagnetic wave at band gap frequencies. The wave can only propagate inside the line defect.

Photonic Crystal with line defect
Figure 7: Photonic Crystal with line defect

Finally, Figure 8 shows the wave propagation inside the Photonic crystal with a bent defect. Again, the structure is driven with a time harmonic signal. The signal frequency is inside band gap of the crystal. Consequently, the wave propagates inside bend defect.

Photonic crystal with a bend defect
Figure 8: Photonic crystal with a bend defect

This article demonstrates the possibilities to model photonic crystals with CST MWS by using the transient solver. The general characterization would also be possible with the Frequency Domain and Eigenmode Solver of CST MWS by applying periodic boundary conditions.

CST Article "Photonic Crystal Simulation"
last modified 15. Jan 2007 5:42
printed 28. Nov 2015 5:33, Article ID 296

All rights reserved.
Without prior written permission of CST, no part of this publication may be reproduced by any method, be stored or transferred into an electronic data processing system, neither mechanical or by any other method.


30 of 36 people found this article useful

Did you find this article useful?

Other Articles

Advanced Modelling and Measurement of Wideband Horn Antennas

Advanced Modelling and Measurement of Wideband Horn Antennas
This paper presents the excellent correlation of measurement results to the numerical calculations of a SATIMO dual-ridge horn antenna which include the directivity, boresight gain, and return loss vs. frequency. The structure is electrically large which lends itself, as a result of its efficient memory utilisation, to the CST MICROWAVE STUDIO® (CST MWS) Time Domain Solver. Broadband, high resolution gain results can be obtained within a single run with as many as 100 farfield monitors being defined. The results are presented with the courtesy and permission of SATIMO, Italy. Read full article..

Phase Center Computation of a Corrugated Horn

Phase Center Computation of a Corrugated Horn
For a customer given corrugated horn the phase center has been computed using CST MICROWAVE STUDIO® and compared with measurement data. The simulated results are in very good agreement with measurements. Measurements were provided with courtesy and permission of Kathrein Werk KG, Rosenheim, Germany. Read full article..

Characterization of Photonic Structures with CST MICROWAVE STUDIO

Characterization of Photonic Structures with CST MICROWAVE STUDIO Document type
Stefan Prorok, Hamburg University of Technology We present an overview of our current research activities in silicon photonics and thermal barrier coatings. Doing so, we will comment on how CST Microwave Studio can be used to design strip waveguides, micro ring resonators, as well as 2-D and 3-D photonic crystal structures. Particularly we will concentrate on the discussion of photonic crystal micro cavities which can be used as electro-optic modulators. It will be shown that MWS provides all the functionality to optimize and characterize optical micro cavities. The appearance of resonant modes is adjusted through eigenmode calculation of the photonic crystal waveguide modes. Time domain simulation with discrete port excitation is applied to calculate the intrinsic Q-factor of the cavity. Waveguide ports are used to model experimental conditions of excitation with strip waveguide modes. Field monitors help to understand the mechanism of energy loss from the cavity. The simulation results are compared to measurements on fabricated structures. As possible application we will show a hybrid silicon organic hetero structure cavity for GHz electro-optic modulation. Read full article..

Heat Sink Design Flow for EMC

Heat Sink Design Flow for EMC Document type
Heatsinks are large conductive objects which are typically ungrounded and placed above ASICs or other ICs. They may pickup and enhance radiation. With today's SerDes line rates, wavelength sizes in the system are now comparable to heatsink sizes. A design flow is proposed that will allow quick and systematic simulations of heatsink for EMI. Read full article..

3D EM Modeling of a DDR4 Memory Channel

3D EM Modeling of a DDR4 Memory Channel
The modeling section of the webinar will look at the importance of return path discontinuities. When should we use a 2D approach and when do we need 3D full-wave solver? Can we adopt a "cascaded S-parameter” approach to modeling a channel, where each component is simulated separately, or must we revert to "combined 3D modeling", in which the full channel – controller package, motherboard and DIMM connector – are combined in a single 3D CAD model? Read full article..
Back Back  

Your session has expired. Redirecting you to the login page...