Whitepaper

CST STUDIO SUITE® includes an extensive range of simulation tools, and has found use in a wide variety of application areas in both industry and research.

These whitepapers demonstrate some of the applications that have been found for CST products and show how the software was able to help engineers and researchers overcome challenges, as well as offering some advice on how to implement the demonstrated techniques in the development process.

Whitepaper MWandRF Whitepaper EDA
Whitepaper CPD Whitepaper LF
Whitepaper EMC

All Articles

Modeling and Simulation of Metamaterial-Based Devices for Industrial Applications

Modeling and Simulation of Metamaterial-Based Devices for Industrial Applications Document type
Metamaterials o er great potential for the development of new technologies and to make existing devices smaller, faster and more efficient. Metamaterials produce electromagnetic phenomena that are not seen in natural materials, and come in a wide variety of types. When developing a new metamaterial, simulation can be used both to analyze both the bulk property of the material and individual element. This article will show how CST STUDIO SUITE can be used to simulate and design metamaterials through the entire workfl ow, from the design of the resonator to the implementation in a full device. Read full article..

RFID And Wireless Power Transfer Simulation From Tag to System

RFID And Wireless Power Transfer Simulation From Tag to System Document type
This article discusses the design and modeling of both low frequency (LF) and high frequency (HF) RFID devices using CST® STUDIO SUITE®. This can be done at the level of the individual tag, but also for the entire system, including the reader, the tagged object and its surroundings. Analyzing the entire system with simulation allows the suitability of the chosen RFID system for the application to be investigated, and can reveal unforeseen interactions that can be hard to identify with measurement alone. Read full article..

Efficient Electromagnetic Simulation of Shielding Mechanisms in Microwave Ovens

Efficient Electromagnetic Simulation of Shielding Mechanisms in Microwave Ovens Document type
The door to a microwave oven forms part of the heating cavity, allowing access to the oven interior. The seal around the door is never perfect, so electromagnetic fi elds will leak out of the oven, potentially interfering with other electrical equipment or exceeding safety limits for power levels in human operators. Oven designs have to meet legal requirements for the amount of power which can leak beyond a certain distance from the oven (due to human exposure concerns), and also have to meet electromagnetic compatibility (EMC) requirements. This article discusses how electromagnetic simulation can be used to design effective shielding mechanisms in order to adhere to these standards. Read full article..

Modeling of large microwave cavities for industrial and scientific applications

Modeling of large microwave cavities for industrial and scientific applications Document type
The cavities of microwave heating devices need to be carefully designed in order to ensure safe, efficient operation and homogeneous field distributions. The size, the number of modes and the resonant nature of a cavity can pose difficulties for their simulation. This paper discusses the modeling of microwave cavities and demonstrates how a system for heating test samples was optimized using electromagnetic simulation. Read full article..

Combined 3D electromagnetic and spin response simulation of MRI systems

Combined 3D electromagnetic and spin response simulation of MRI systems Document type
Modern MRI systems are highly complex devices, and the interaction between the body and MRI coils introduces additional challenges into the design process. The body, with its complicated heterogeneous interior, causes major disturbance to the homogeneity of the magnetic fields, while energy absorbed by the body can cause harmful heating. Experimental measurement of these effects is often impossible, but simulation with 3D body models can help the engineer identify risks to the patient and suggest ways to reduce them. Read full article..

Matching circuit optimization for antenna applications

Matching circuit optimization for antenna applications Document type
Impedance matching is an essential part of antenna design. The input impedance of an antenna needs to be reasonably close to the amplifier impedance (e.g. 50 Ohm), otherwise the signal is reflected back to the amplifier and not radiated by the antenna. In many applications matching circuits consisting of discrete inductors and capacitors, or transmission lines are used to improve the impedance matching characteristics of the antenna. This white paper discusses the optimization of matching circuits especially to antenna applications. Although the design of matching circuits sounds simple, there are many practical considerations that need to be addressed. Read full article..

Optimization of a Reflector Antenna System

Optimization of a Reflector Antenna System Document type
In this paper a modular approach using the so-called System Assembly and Modeling (SAM) of CST STUDIO SUITE® is used to optimize a reflector antenna system in a piecewise manner. The results are compared to a full system simulation. It is shown that a similar accuracy to that of the full system simulation can be attained with the modular approach with a much shorter simulation time and using less computational resources. Read full article..

Installed Performance of Communication Antenna Arrays

Installed Performance of Communication Antenna Arrays Document type
The presence of multiple communication antennas on a tower means that antennas may have to be installed in sub-optimal positions. Electromagnetic simulation can be used to design the antennas themselves, and also to optimise the positioning of the antennas on the tower. This article will describe how multiple solvers in CST MICROWAVE STUDIO® can be combined to predict where to install an omnidirectional stacked bicone antenna array to minimise loss of omnidirectionality. Read full article..

Analyzing Power Integrity Issues from Power Plane Interactions

Analyzing Power Integrity Issues from Power Plane Interactions Document type
When a printed circuit board (PCB) includes a power plane that is near to signal traces or other power planes, there is a significant risk of energy transfer between parts of the system. Not only does this coupling lead to power switching noise being transferred into data signals, it also means that power supply systems may demonstrate additional resonances that are not seen in the individual components. This can affect the power integrity of the PCB and may reduce its speed or reliability. This paper will explore some of the potential power integrity issues that can affect a PCB and explain how simulation can be used to help reduce these effects. Read full article..

Nanophotonics and integrated optics - Photonic Crystal Cavities

Nanophotonics and integrated optics - Photonic Crystal Cavities Document type
This whitepaper gives a general overview on different concepts of photonic crystal cavities. Important figures such as the transmission, the mode volume and the quality factor are discussed. The presented information will help the reader to decide which type of photonic crystal cavities will be most suited for the application in view. A design example for a WDM channel filter is given in order to illustrate the design process for a photonic crystal cavity. Furthermore two experimental examples from recent research are shown to demonstrate the wide range of applications in which photonic crystal cavities could be used. Read full article..

A Multiphysics Approach to Magnetron and Microwave Oven Design

A Multiphysics Approach to Magnetron and Microwave Oven Design Document type
The magnetrons used in microwave ovens operate on the same frequency band as Wi-Fi equipment, and the radiation they release can interfere with the operation of wireless networks. This paper presents a multiphysics simulation of a magnetron using CST STUDIO SUITE®, with the aim of testing the electrical, magnetic, thermal and mechanical characteristics of a low-interference magnetron design. The simulation results are then compared to measurements made experimentally, and the two sets of results are shown to be in good agreement. Read full article..

Your session has expired. Redirecting you to the login page...