RFID system design using 3D EM simulation tools

Marc Rütschlin, CST UK Ltd.
Presentation Outline

- RFID Design Process
- Where does EM simulation fit in, and how can it make the design process more efficient?
 - Tag design
 - System analysis
- What is required of an EM simulation tool?
 - Frontend
 - Solvers
 - Post-processing
- Some real-world examples
RFID Tag Antenna Design Process

Application? Tag requirements?

Construction materials?

ASIC Impedance?

Antenna Specification
RFID Tag Antenna Design Process

Antenna Specification

Parametric study, optimisation. → Build and measure prototypes.

Design requirements met? → EM Simulation

Design ready!
Antenna to System

- The antenna design is only the first step. The antenna is positioned on an object and used in a system, and this introduces additional unknowns which may affect the tag’s performance.

- **Antenna unknowns:**
 - geometry
 - material properties

- **Positioned antenna unknowns:**
 - container geometry
 - container material properties
Antenna to System

- Antenna in system unknowns:
 - position and orientation of tag relative to reader
 - effect of group on individual performance (e.g. shielding)
Why EM Simulation?

- RFID tags have to be fast to develop, cheap to manufacture, but are expected to function robustly despite construction tolerances, variations in material properties, on a variety of backgrounds, and all that in a system in a possibly complex environment.

- Using electromagnetic simulation, we can:
 - robustly optimise the initial tag,
 - consider the effects of positioning the tag,
 - check that the whole system will work as envisaged.

- The analysis of complex systems by traditional methods within an acceptable budget and time-frame is unfeasible.

- The only way to ensure that the tag will work not only on its own, but also in its intended environment, is by using EM simulation tools.
EM Simulator Requirements

- General requirements of a modern EM simulation tool:
 - intuitive user interface
 - efficient solvers
 - powerful post-processing
User Interface Requirements

- Intuitive CAD type graphical user interface
- Easy robust parametric construction
- Import from different formats
 - modification, parameterization
- Advanced meshing algorithms
- Powerful macro programming and scripting
Graphical User Interface

- Construct
- CAD Import
- Parameterize
- Integrate
Parameterization

- Critical!
- Should be a fundamental part of construction.
- Should be easy to modify and parameterize imported structures.
- Allows parametric analysis and optimisation.
Solver Requirements

- Choose the right solver for the job.
- Advanced algorithms efficiently using modern hardware give the best performance.
- Parametric sweeps and effective optimisers are essential.
- For systems: co-simulation of 3D EM model and attached circuit.
Choose the Right Solver for the Job

- **Inductive Coupling (125 kHz - 15 MHz)**
 - Very small dimensions
 - Coupling only through magnetic field
 - Tag typically a planar coil
 - Best simulated in the Frequency Domain

- **Microwave Coupling (868 MHz - 5.8 GHz)**
 - Typically a regular antenna
 (e.g. planar folded dipole)
 - Matching network important to keep antenna small
 - Best simulated in the Time Domain
Example: Effect of Placing Tag

- Placing a tag on an object can have a dramatic effect on its properties, and this must be taken into account during its design.
Example: Tag Optimisation

- Will the tag work despite changes in the material properties of the object on which it is placed? A parameter sweep of the permittivity may answer this question.

![Graph showing S11 in dB vs frequency for different ε_r values. ε_r = 3.1 and ε_r = 3.7 are highlighted.]
Chip Effect: Matching Network

- Can consider the effect of a matching network on the antenna behaviour.
- We can e.g. optimise a simple L-C section to allow the antenna to perform best at 900 MHz.

![Diagram of a matching network with an antenna positioned at 900 MHz](Image)

- S11 in dB
- Frequency in GHz
- Matched antenna
- Antenna positioned at 900 MHz
Example: System Simulation

- How is the read range affected if the tag is placed among a group of other tags? Will the transmission to each still be sufficient?

Tag reader, optimized for operation at 900 MHz.
Example: System Simulation

- Shielding effects become apparent for the tags that are further removed from the reader. Or do they?
Transmission Levels

transmission in dB

energy
System View: AM-Signal Generator

AM Input Signal at RFID Reader

HF Signal

Input Signal

LF Signals at RFID Tag 3
Example: Complex Environment

- How well will the tag function when placed in a complex environment like a reinforced crate containing cable spools?
Example: Complex Environment

- The tag functions, but there are will be reception nulls from which it cannot be read. Using this information, we can decide on where to position the reader antenna.
Conclusion

- EM simulation is indispensable in RFID design process.
 - Antenna design and system analysis are required.
 - Parameterization is everything.
 - Choose the right solver for the job.
Contact Details

Marc Rütschlin, CST UK Ltd.
marc.ruetschlin@cst.com
tel. +44 (115) 9061 126
www.cst.com