Calibration of Probes for EMC Near-Field Scanning

Matthias Spang1, Manfred Albach1, Goeran Schubert2

1Chair of Electromagnetic Fields
Friedrich-Alexander-University
Erlangen-Nuremberg, Germany
www.emf.eei.uni-erlangen.de

2Continental Automotive Systems
Competence Center Electronic
Nuremberg, Germany
www.contiautomotive.com
Outline

1. Introduction
2. Calibration structures
3. Probe compensation
4. Measurements
5. Summary
Purpose of this work

- Measurement of all 6 field components on scanning plane above PCB
- Post-processing techniques can reconstruct entire field from ≥2 probe outputs
- Application of probes with multiple outputs to determine entire electromagnetic field on scanning plane
- Calibration of probes
Introduction

Probe calibration process

- Measurement of probe output above calibration structure
- Full-wave simulation of near-field pattern above calibration structure
- Spatial 2D-Fourier-transformation of the measured and simulated results
- Calculation of probe transfer function in spatial frequency domain
1. Introduction
2. Calibration structures
3. Probe compensation
4. Measurements
5. Summary
Calibration of Probes for EMC Near-Field Scanning

Calibration structures

Used PCBs: microstrip structures with ground plane, 16cm x 10cm
Calibration of Probes for EMC Near-Field Scanning

Calibration structures

Transient simulation of near-fields

- 50Ω SMA Port modelled as waveguide port
- Frequency range 1MHz – 3GHz
- Low frequencies → long simulated period
- xy-resolution: 1mm
- \(\approx 2.4 \) million meshcells
- Simulation time 1h 35m
Calibration of Probes for EMC Near-Field Scanning

Calibration structures

Transient simulation of near-fields

- $50\,\Omega$ SMA Port modelled as waveguide port
- Frequency range $1\,\text{MHz} – 3\,\text{GHz}$
- Low frequencies \rightarrow long simulated period
- xy-resolution: $1\,\text{mm}$
- ≈ 2.4 million meshcells
- Simulation time $1\,\text{h 35m}$

Chair of Electromagnetic Fields
www.emf.eei.uni-erlangen.de
Calibration of Probes for EMC Near-Field Scanning

Calibration structures

Transient simulation of near-fields

- 2 E- and H-field monitors per decade, 1MHz-3GHz
- 3D-fields on 2D-plane
- ASCII-export of field data
- 1mm spatial resolution
- Further calculations in Matlab

Settings for 2D/3D Plot Data Export

- Number of steps fixed
- Step width fixed
- Same step width for all directions

Chair of Electromagnetic Fields
www.emf.eei.uni-erlangen.de
Outline

1. Introduction
2. Calibration structures
3. Probe compensation
4. Measurements
5. Summary
Purpose of probe compensation

- Reconstruction of field components from output signals

Approaches

- Pointwise compensation („antenna factor“)
 No compensation of parasitic field coupling and spatial convolution

- Deconvolution compensation (plane wave theory)
 Compensation of parasitic coupling and spatial convolution possible
Plane Wave Theory

• Representation of the electromagnetic field as a superposition of plane waves:

\[
\tilde{A}(x, y, h_s) = \frac{1}{4\pi^2} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \tilde{T}^A(k_x, k_y, h_s) e^{i(k_x x + k_y y)} dk_x dk_y
\]

• Relations between field components (Maxwell's equations)

Only 2 of 6 field components are independent!

\[
\begin{align*}
\vec{k} \cdot \vec{T}^E &= 0 \\
\vec{k} \times \vec{T}^E &= \omega \mu \vec{T}^H \\
\vec{k} \cdot \vec{T}^H &= 0 \\
\vec{k} \times \vec{T}^H &= -\omega \varepsilon \vec{T}^E
\end{align*}
\]
Calibration of Probes for EMC Near-Field Scanning

Probe Compensation

Calibration

- Determination of probe reaction on each component of the plane wave spectrum

- Procedure:
 - Scan of ≥ 2 DUTs with known fields
 - Spatial Fourier-Transformation of fields and probe output
 - Determination of calibration coefficients

- Result: calibration data for each probe output mode and for 2 field components

- >2 calibration DUTs: overdetermined LSE, noise reduction
Compensation Process

- Scan of DUT with ≥ 2 probes / modes / polarizations
- Spatial Fourier-Transformation of probe output
- Calculation of 2 field components using calibration coefficients
- Inverse spatial Fourier-Transformation of fields
- Calculation of remaining field components
- >2 modes: overdetermined LSE, noise reduction
- Use of probe with multiple outputs decreases positioning errors
Outline

1. Introduction
2. Calibration structures
3. Probe compensation
4. Measurements
5. Summary
Positioning System

- PCBs 160x200mm²
- Step size 10µm (x,y)
- z position fixed
- Amplitude and phase measurement by VNA
Calibration of Probes for EMC Near-Field Scanning Measurements

Probes

- Probe A: Electric dipole, 2 outputs
- Probe B: Combined dipole / loop probe, 4 outputs
- Both made of semi-rigid coaxial cables with 2.2mm outer diameter
Calibration of Probes for EMC Near-Field Scanning

Measurements

Probe A

Used PCBs: microstrip structures with ground plane
Results
Output Signals of probe A at 3.16 GHz

P1, dm

P2, dm

P1, cm
Calibration of Probes for EMC Near-Field Scanning Measurements

<table>
<thead>
<tr>
<th>Electric field</th>
</tr>
</thead>
<tbody>
<tr>
<td>From probe compensation (2 modes, 2 polarizations)</td>
</tr>
<tr>
<td>From Microwave Studio</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ex</th>
<th>Ey</th>
<th>Ez</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chair of Electromagnetic Fields
www.emf.eei.uni-erlangen.de
Calibration of Probes for EMC Near-Field Scanning Measurements

Magnetic field

From probe compensation (2 modes, 2 polarizations)

From Microwave Studio

From Microwave Studio

Chair of Electromagnetic Fields
www.emf.eei.uni-erlangen.de
Calibration of Probes for EMC Near-Field Scanning Measurements

Probe B

Additional PCBs

Chair of Electromagnetic Fields
www.emf.eei.uni-erlangen.de
Calibration of Probes for EMC Near-Field Scanning Measurements

Results

Output Signals of probe B at 3.16 GHz

- E_x mode
- E_z mode
- H_x mode
- H_z mode
Calibration of Probes for EMC Near-Field Scanning Measurements

Electric field

From probe compensation (4 modes, 1 polarization)

From Microwave Studio

Chair of Electromagnetic Fields
www.emf.eei.uni-erlangen.de
Calibration of Probes for EMC Near-Field Scanning

Measurements

<table>
<thead>
<tr>
<th>Magnetic field</th>
</tr>
</thead>
<tbody>
<tr>
<td>From probe compensation (4 modes, 1 polarization)</td>
</tr>
<tr>
<td>From Microwave Studio</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H_x</th>
<th>H_y</th>
<th>H_z</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chair of Electromagnetic Fields
www.emf.eei.uni-erlangen.de
Observations

- Better results with calibration using >2 DUTs
- Calibration quality depends on PCB selection
- Compensation using >2 probe outputs improves results
- Magnetic field calculation from separate calibration better than from electric field
1. Introduction
2. Calibration structures
3. Probe compensation
4. Measurements
5. Summary
Summary

- Presentation of a planar near-field scanning system
- Calculation of calibration field patterns using Microwave Studio
- Application of probe compensation techniques using plane wave theory
- Extraction of electric and magnetic field components from the scan data, comparison with CST simulation results
- Probes with multiple outputs well suited for probe-compensated near-field measurements
Thank you for your attention!