Using CST Microwave Studio
Distributed Computing in a Workgroup Environment

Dr. Roland Rathgeber
Development of Filters and Combiners
KATHREIN-Werke KG, Rosenheim, Germany
Distributed Computing - Overview

- Introduction
- First Setup *(using CST 2008)*
- Second Setup *(using CST 2009 / 2010)*
- Open Issues / Other Issues
- Conclusion
Introduction: Distributed Computing

- Distributed Computing first introduced in CST Version 2006

- Originally, seemed to be tailored for two types of computer environments:
 - „Workgroup with additional ´calculation only´ computers“
 - „one-man engineering office“ (see following slides)

In both cases, the Solver Servers will run on ´calculation only´ computers!
Introduction: Workgroup with ‘calculation only’ computers

<table>
<thead>
<tr>
<th>Computer</th>
<th>Frontend</th>
<th>Main Contr.</th>
<th>Solver Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desktop #1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desktop #2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desktop #3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>‘Calc only’ #1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>‘Calc only’ #2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>‘Calc only’ #3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- E. g. ‘Calculation only’ high-performance computers in a separate room ...
- Main Controller preferably on one of the ‘calculation only’ computers ...
Introduction: One-Man Engineering Office

<table>
<thead>
<tr>
<th>Computer</th>
<th>Frontend</th>
<th>Main Contr.</th>
<th>Solver Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desktop</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>‘Calc only’ #1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>‘Calc only’ #2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>‘Calc only’ #3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Main Controller** preferably on one of the ‘calculation only’ computers...
First Setup - Motivation

Development workgroup, each engineer has his own desktop computer, but no additional ‘calculation only’ computers are available!

Does it make sense to use Distributed Computing in such an environment?

Motivation: Use the resources of the colleagues’ computers
- while they are doing non-computer work (RF hardware, measurements, ...)
- while they are away in a meeting / on travel / in holiday
- during nighttime or weekend

Use Distributed Computing for
- \(n \) parallel (port, parameter set, ...) calculations on \(n \) computers (*license!*)
- only 1 calculation on 1 other computer
 - „remote calculation“ - *no specific license option required!*
 - other computer more powerful (RAM, no. of processors, CPU speed)
 - save resources of your ‘own’ computer for other tasks
First Setup - Configuration

Computer	**Frontend**	**Main Contr.**	**Solver Server**
PC Roland | | |
PC Franz | | |
PC Jens | | |
PC Martin | | | ...

- CST STUDIO 2008 used for this first setup
- My own desktop computer used as „Main Controller“
- Any computer may be used as „Frontend“, i. e. it may send jobs into the Distributed Computing environment
- All computers can be used as Solver Servers
First Setup – Specific Challenges

◆ Availability:
 □ Ideally, Main Controller and Solver Servers should be available **at any time**
 □ But: Personalized desktop computers will typically be **switched off**
 when their owner is absent, will be **rebooted** from time to time, etc.
 □ Computers **switched off** in the late afternoon, disregarding running jobs ...

◆ Resources:
 □ Depending on his own computational workload, the owner of a PC
 may **accept**, or **not accept**, Solver Server jobs running on his computer

◆ Inhomogeneity:
 □ Typically, computers have different RAM, no. of processors, CPU speed, ...
 □ CST STUDIO 2008 seemed to distribute Solver Server jobs just randomly
 ○ a job may start on a machine with **insufficient memory – and crash!**
 ○ a time-consuming job may run on a relatively **slow computer**
Second Setup - Motivation

◆ Main difference:
 - Moving the Main Controller from ‘PC Roland’ to a separate notebook PC!
 (5 years old, 1 GByte RAM, no other tasks than ‘Main Controller’)

◆ Reasons:
 - **Availability!!!** (permanent availability is a prerequisite for user acceptance!)
 - no reboots during daytime work
 - not switched off during nighttime
 - Environmental
 - power consumption
 - heat dissipation
 - acoustic noise
 - Main Controller is now totally independent from day-by-day computer work
Second Setup - Configuration

<table>
<thead>
<tr>
<th>Computer</th>
<th>Frontend</th>
<th>Main Contr.</th>
<th>Solver Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notebook</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC Roland</td>
<td></td>
<td></td>
<td>(Prio 2)</td>
</tr>
<tr>
<td>PC Franz</td>
<td></td>
<td></td>
<td>(Prio 3)</td>
</tr>
<tr>
<td>PC Jens</td>
<td></td>
<td></td>
<td>(Prio 4)</td>
</tr>
<tr>
<td>PC Martin</td>
<td></td>
<td></td>
<td>(Prio 5)</td>
</tr>
<tr>
<td>PC Rainer</td>
<td></td>
<td></td>
<td>(Prio 1)</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- CST STUDIO 2009 *(and later CST STUDIO 2010)* used for second setup
- 2 Solver Servers on the most powerful *(2 processors x 2 cores)* machines
- Only one „thread“ per Solver Server
 (mainly Eigenmode JDM and „Resonant“ solver – these calculations use just 1 core)
Second Setup – Improvements in CST STUDIO 2009

- Improved functionality of Main Controller ‘use’ flags
- Introducing ‘priorities’ for Solver Servers

- Improved Main Controller ‘remote connection’ functionality
- Automatic refresh of Main Controller window

- Warning messages added for certain - potentially destructive - user interactions
Second Setup – Status of ‘Specific Challenges’

◆ Availability:
 - Main Controller on **notebook PC** now **running 7 days, 24 hours**
 - As soon as a desktop PC (**frontend**) is switched on, at least one Solver Server (**on this computer**) will be available

◆ Resources:
 - Main Controller **´use´ flags** accessible to (de)activate Solver Servers
 - by every user (Main Controller **remote connection** – use some discipline!)
 - a running job will not be stopped, but no new job will be accepted

◆ Inhomogeneity:
 - Highest **Priority** („1“ is highest!) for fastest computers
 - Two Solver Servers on **dual-processor-dual-core** machines
 (can be activated / deactivated separately by the **´use´ flag**)
 - Only computers with a certain minimum RAM (2 GByte ... 4 GByte) to be used as Solver Servers
Distributed Computing – Open Issues (as of CST STUDIO 2009)

◆ **Instabilities:**
 e.g. after stopping a distributed optimization by user, sometimes a Solver Server remains blocked

◆ **Missing functionality** for Distributed Computing, e.g.:
 □ Information during optimization runs (*goal and parameter values*)
 □ Creating Touchstone files via Result Templates ...

◆ Other minor or ‘cosmetic’ bugs
New license mechanism ("Token"):

Some improvements, e.g.:
- Information during distributed optimization
- Refresh behaviour of Main Controller window

More stability (to be observed further...)
Distributed Computing – Other Issues (general)

◆ Which computers to be used as Solver Servers?
 - Use all available computers (*all computers with some minimum RAM*):
 + all jobs will start as soon as possible,
 - but some jobs will run on ‘slow’ machines
 - Use just the most powerful computers:
 - execution of some jobs will have to wait,
 + but when started, all jobs will run on fast machines!

◆ Main Controller:
 - Avoid automatic restarts (*e.g. after security updates*)
 - Prevent Main Controller from going to standby / closing down
 network connections (*energy settings ...*)

◆ Access rights: A non-administrator doing some kind of computer administration ...
Distributed Computing - Conclusion

- CST Distributed Computing makes sense in a workgroup environment, even if no additional ´calculation only´ computers are available.

- Permanent availability (especially of the Main Controller) is a prerequisite for the user acceptance of Distributed Computing.

- Ensure good communication, when sharing PCs for Distributed Computing.

- „Remote Calculation“ (moving just one calculation to another, more powerful computer) is often a more important application of ´Distributed Computing´ than doing a real distribution of n parallel calculations on n computers.

- Use a CST LAN (floating) license, if you want to run Distributed Computing – using a node-locked (´dongle´) license, though possible, really ain´t fun!

- Distributed Computing improvements CST 2008 \rightarrow CST 2009 \rightarrow CST 2010.