• Which Products are you interested in ?

    CST offers a wide range of EM simulation software to address design challenges across the electromagnetic spectrum, from static and low frequency to microwave and RF, for a range of applications, including EDA & electronics, EMC & EMI and charged particle dynamics.

  • Antenna Magus
  • IdEM
  • FEST3D
  • Optenni Lab
  • Looking for a Training, Workshop or eSeminar ?

    CST STUDIO SUITE® is being demonstrated at trade shows and workshops all over the world. Take a look at the list of conferences and exhibitions CST will be attending and get further information regarding CST workshops, eSeminars and training days.

  • TrainingsRegular training courses are held in CST's offices in Asia, Europe, and North America. Please check our trainings section for detail of trainings in all over the globe. Advance registration is normally required.

  • WorkshopsCST hosts workshops in multiple languages and in countries around the world. Workshops provide an opportunity to learn about specific applications and refresh your skills with experienced CST support staff. Make sure you visit our workshop section.

  • eSeminarsThroughout the year, CST simulation experts present eSeminars on the applications, features and usage of our software. You can also view past eSeminars by searching our archive and filtering for the markets or industries that interest you most.

  • Check our latest Events
  • Why create a MyCST Account ?

    A MyCST account may facilitate your access to many of the offerings on the CST website, for example the registration for eSeminars and the watching of eSeminars recordings, setting email preferences, and there is more functionality to come. It is required to participate in workshops and trainings.

  • Personal PreferencesAllows you to update your email preferences and areas of interest. It helps us to personalize your experience.

  • EventsSearch for events by location, industry and application. Once you are registered, you will be able to manage your registrations and check important details about your events. This section also provides you with a repository for Workshop & Training material.

  • LibraryYou can collect articles you find on the CST website to reference or read later by clicking on the “Add this article” button at the bottom of the article page.

  • Create Your Own Account
  • Need technical Support ?

    Customers can customize their accounts once they have completed the account creation process. This platform acts as vivid interface between CST and our customers.

    We therefore offer access to the latest Service Packs (including an automatic notification that a new Service Pack is available), a steadily growing database of Frequently Asked Questions (FAQs), Application Notes and Training Videos, as well as an individual FTP section for easy exchange of large files with our support team.

  • Do I need an Account?To access the Support Site a valid maintenance contract and a one-time registration is required.

    Please note that your Support login does not work for the MyCST account.

  • Get Support
  • How to request a Trial License ?

    Get your license in only three steps:

    1. Fill in the required fields in the contact form on the right and click "Send Us Your Request".

    2. Lean back and wait until one of our CST Experts contacts you.

    3. Enjoy a our trial license.

  • Student Edition

    Student Edition The CST STUDIO SUITE® Student Edition has been developed with the aim of introducing you to the world of electromagnetic simulation, making Maxwell’s equations easier to understand than ever. With this edition you have, bar some restrictions, access to our powerful visualization engine and some of the most advanced solvers of CST STUDIO SUITE.

    Student Edition

CST – Computer Simulation Technology

Hollow Rectangular Waveguide

E-field phase animation at 10 GHz
Figure 1: E-field phase animation inside a rectangular waveguide at 10 GHz.

The Physics

A hollow waveguide is a transmission line that looks like an empty metallic pipe. It supports the propagation of transverse electric (TE) and transverse magnetic (TM) modes, but not transverse electromagnetic (TEM) modes. There is an infinite number of modes that can propagate as long as the operating frequency is above the cutoff frequency of the mode. The notation TEmn and TMmn are commonly used to denote the type of wave and its mode, where m and n are the mode number in the horizontal and vertical directions respectively. The mode with the lowest cutoff frequency is called the fundamental mode or dominant mode. For a hollow rectangular waveguide the dominant mode is TE10 and its E, H and J fields are shown in Fig. 2.

Fields pattern of the fundamental mode, TE_10
Figure 2: Fields pattern of the fundamental mode, TE10. The green lines represent the E-field, the purple lines the H-field and orange lines the J-field.

The electromagnetic analysis of a rectangular waveguide is well known, and can be easily found in the literature, like [1]. Here we list only final results that can be used to verify the simulation results.

f c m n =
2 π
k c m n
(Eq. 1)

(Eq. 2)

βmn=k2kcmn2 (Eq. 3)

fcmn : cutoff frequency of the mode mn

βmn : propagation constant corresponding to the mode mn

αmn : attenuation constant corresponding to the mode mn

k : free-space wavenumber

kcmn : wavenumber corresponding to the mode mn

a and b : width and height of the waveguide respectively (see Fig. 3)

The Model

A section of a rectangular waveguide is modeled in CST STUDIO SUITE® and the first 3 modes are calculated and their field distributions analyzed. The dimensions used are the standard for WR-90 waveguide. Because the background is set to perfectly electrical conductor (PEC) material, we only need to model the vacuum inside the waveguide, with a waveguide port at each end. The boundary conditions are “electric” in all directions, and the model is simulated using the time domain solver. In this model the first 3 modes are calculated, and E- and H-field monitors are set-up at 10, 13.5 and 15 GHz.

Parameter Value Description
a 22.86 mm Big edge dimension
b 10.16 mm Small edge dimension
l 40 mm Length of the waveguide
Section of a rectangular waveguide (WR-90) modeled in CST STUDIO SUITE
Figure 3: Section of a rectangular waveguide (WR-90) modeled in CST STUDIO SUITE, where α=22.86 mm, b =10.16 mm and l=40 mm.


Model Construction Watch Video

Download Model File (Student Edition) Download Model File

Discussion of Results

In Fig. 4 we show the dialog window of the Port Mode Information at 10 GHz. This can be found by right-clicking on the port in the dialog tree, and selecting “Object Information”.

Port mode information for the 3 first modes at 10 GHz
Figure 4: Waveguide port mode information summarizing results for the first 3 modes of a WR90 at 10 GHz


In Table 2 we compare the results shown in Fig. 4 and compare with the analytical results given by the Eq. 1 – 3.

fcmn[GHz] βmn [1/m] αmn [1/m]
Mode simulated analytical simulated analytical simulated analytical
TE10 6.54 6.56 158.46 158.05 - -
TE20 13.02 13.12 - - 174.71 177.99
TE01 14.63 14.76 - - 223.81 227.48
Table 2: Comparison between simulation and analytical results at 10 GHz


Note that for the higher modes, there is no real beta at 10 GHz. That is because those modes are below the cutoff frequency, and the propagation constant becomes entirely imaginary (alpha). As Eq. 2 demonstrates, this indicates that kcmn>k . As these modes do not propagate, CST STUDIO SUITE also calculates the distance of -40 dB of attenuation.

In the 2D/3D Results, we can see the field patterns for each mode. Fig. 5 shows the E-, H- and J-field patterns for each mode at 15 GHz. Fig 6 shows the field pattern for the TE01 mode at 10 GHz, below its cutoff frequency. As expected from the port mode calculation (Fig. 4), the mode does not propagate, and is attenuated below the -40 dB level around 20 mm into the waveguide.


E-, H- and J-field patterns for 3 modes
Figure 5: E-, H- and J-field patterns for the first 3 modes at 15 GHz.

Additional Tasks

  • Model the WR-90 with a metallic wall made of copper (assume that the wall is infinitely thin, and use the “Copper (annealed)” from the CST material library) and estimate the waveguide attenuation at 10 GHz for the fundamental mode. Compare your results with the analytical results. You can also try comparing different mesh settings (for example, 10, 30 and 50 lines per wavelength) and different solvers. Which would you expect to give the closest fit to the analytical results?
  • Waveguides are sometimes “loaded” with dielectric in order to reduce their cutoff frequency, effectively reducing the size of waveguide required for a given mode to propagate. Replace the vacuum material with a dielectric, and perform a parameter sweep for the permittivity of this material. What permittivity would be required to allow the TE01 mode to propagate at 10 GHz?
E-field pattern for the TE01 mode below cutoff
Figure 6: E-field pattern for the TE01 mode below cutoff, plotted with a dB scale and a lower limit of -40 dB.


  • [1] D.M. Pozar, Microwave Engineering, 4th Edition, John Wiley & Sons, pp. 110-119
contact support

Your session has expired. Redirecting you to the login page...

We use cookie to operate this website, improve its usability, personalize your experience, and track visits. By continuing to use this site, you are consenting to use of cookies. You have the possibility to manage the parameters and choose whether to accept certain cookies while on the site. For more information, please read our updated privacy policy

Cookie Management

When you browse our website, cookies are enabled by default and data may be read or stored locally on your device. You can set your preferences below:

Functional cookies

These cookies enable additional functionality like saving preferences, allowing social interactions and analyzing usage for site optimization.

Advertising cookies

These cookies enable us and third parties to serve ads that are relevant to your interests.