CST – Computer Simulation Technology

A Coaxial Microwave Applicator for Direct Heating of Liquids Filling Chemical Reactors
Guido Biffi Gentili, Mariano Linari, Iginio Longo, Andrea Simone Ricci
IEEE Transactions on Microwave Theory and Techniques
Volume: 57, Issue: 9, Sept. 2009
2268 - 2275
Chemical reactions, coaxial applicator, insulated antenna, lossy media, microwave heating
A coaxial microwave applicator radiating in a liquid medium contained inside a chemical reactor is described. The applicator consists of an insulated asymmetrical dipole antenna that radiates almost isotropically. Hence, it appears well suited to directly heat the medium that fills the vessel, making it unnecessary to use a microwave oven as currently done in microwave assisted chemistry. The electromagnetic (EM) properties of the insulated dipole antenna emitting in high permittivity lossy media are first reviewed to define the applicator design criteria. A 3-D numerical EM solver is then employed to analyze the radiation of the applicator in the surrounding medium taking into account the whole structure of the reactor. Safe operations are always assured by the proper design of the applicator-vessel mechanical connection that drastically reduces unwanted stray radiation. The agreement between the theoretical analysis and the experiments performed is good, thus confirming that the coaxial applicator compares favorably with the traditional methods of activation, which use a single or multimode resonant EM cavity.

Back to References

contact support

Your session has expired. Redirecting you to the login page...

We use cookie to operate this website, improve its usability, personalize your experience, and track visits. By continuing to use this site, you are consenting to use of cookies. You have the possibility to manage the parameters and choose whether to accept certain cookies while on the site. For more information, please read our updated privacy policy

Cookie Management

When you browse our website, cookies are enabled by default and data may be read or stored locally on your device. You can set your preferences below:

Functional cookies

These cookies enable additional functionality like saving preferences, allowing social interactions and analyzing usage for site optimization.

Advertising cookies

These cookies enable us and third parties to serve ads that are relevant to your interests.