CST – Computer Simulation Technology

A Compact Six-Port Dielectric Resonator Antenna Array: MIMO Channel Measurements and Performance Analysis
Ruiyuan Tian, Vanja Plicanic, Buon Kiong Lau, Zhinong Ying
IEEE Transactions on Antennas and Propagation
Volume: 58, Issue: 4, April 2010
1369 - 1379
Antenna diversity, dielectric resonator antennas (DRAs), MIMO systems, polarization
MIMO systems ideally achieve linear capacity gain proportional to the number of antennas. However, the compactness of terminal devices limits the number of spatial degrees of freedom (DOFs) in such systems, which motivates efficient antenna design techniques to exploit all available DOFs. In this contribution, we present a compact six-port dielectric resonator antenna (DRA) array which utilizes spatial, polarization and angle diversities. To evaluate the proposed DRA array, a measurement campaign was conducted at 2.65 GHz in indoor office scenarios for four 6 6 multiple antenna systems. Compared to the reference system of monopole arrays which only exploit spatial diversity, the use of dual-polarized patch antennas at the transmitter enriches the channel’s DOF in the non-line-of-sight scenario. Replacing the monopole array at the receiver with the DRA array that has a 95% smaller ground plane, the 10% outage capacity evaluated at 10 dB reference signal-to-noise ratio becomes equivalent to that of the reference system, due to the DRA’s rich diversity characteristics. In the line-of-sight scenario, the DRA array gives a higher DOF than the monopole array as the receive counterpart to the transmit patch array. However, the outage capacity is 1.5 bits/s/Hz lower, due to the DRA array’s lower channel gain

Back to References

contact support

Your session has expired. Redirecting you to the login page...

We use cookie to operate this website, improve its usability, personalize your experience, and track visits. By continuing to use this site, you are consenting to use of cookies. You have the possibility to manage the parameters and choose whether to accept certain cookies while on the site. For more information, please read our updated privacy policy

Cookie Management

When you browse our website, cookies are enabled by default and data may be read or stored locally on your device. You can set your preferences below:

Functional cookies

These cookies enable additional functionality like saving preferences, allowing social interactions and analyzing usage for site optimization.

Advertising cookies

These cookies enable us and third parties to serve ads that are relevant to your interests.