CST – Computer Simulation Technology

Title:
Analytically Expressed Dispersion Diagram of Unit Cells for a Novel Type of Holographic Surface
Author(s):
L. Matekovits
Source:
IEEE Antennas and Wireless Propagation Letters
Vol./Issue/Date:
Volume: 9, 2010
Year:
2010
Page(s):
1251 - 1254
Abstract:
A novel type of surface-impedance modulation mechanism for designing of microstrip-technology-based surface-waveexcited holographic antennas is proposed. The advanced radiating geometry consists of quasi-periodic arrangement of unit cells operating in the leaky-wave region. Flexible design requires a considerable numerical effort determining the dispersion characteristics of any possible unit cell present in the geometry. In this context, an analytic determination of the dispersion diagram for a unit cell with a sinusoidal modulation of the effective dielectric constant in its inside is presented. In this particular case, the solution is expressed in terms of Mathieu functions. The good agreement between numerical data and analytic solutions for an open, unbounded microstrip structure allows introducing the principle of a novel type of holographic surface obtained by cascading unit cells with different modulation parameters, where the phase of the radiating field can be geometrically controlled.
Document:

Back to References

contact support

Your session has expired. Redirecting you to the login page...

We use cookie to operate this website, improve its usability, personalize your experience, and track visits. By continuing to use this site, you are consenting to use of cookies. You have the possibility to manage the parameters and choose whether to accept certain cookies while on the site. For more information, please read our updated privacy policy


Cookie Management

When you browse our website, cookies are enabled by default and data may be read or stored locally on your device. You can set your preferences below:


Functional cookies

These cookies enable additional functionality like saving preferences, allowing social interactions and analyzing usage for site optimization.


Advertising cookies

These cookies enable us and third parties to serve ads that are relevant to your interests.