CST – Computer Simulation Technology

Title:
Breast cancer detection using interferometric MUSIC: Experimental and numerical assessment
Author(s):
Giuseppe Ruvio, Raffaele Solimene, Antonio Cuccaro, Domenico Gaetano, Jacinta E. Browne, Max J. Ammann
Source:
Medical Physics
Vol./Issue/Date:
vol. 41, issue 10, 09/2014
Year:
2015
Page(s):
pp. 103101/1-11
Keywords:
electromagnetic inverse scattering, breast cancer detection, microwave imaging
Abstract:
PURPOSE: In microwave breast cancer detection, it is often beneficial to arrange sensors in close proximity to the breast. The resultant coupling generally changes the antenna response. As an a priori characterization of the radio frequency system becomes difficult, this can lead to severe degradation of the detection efficacy. The purpose of this paper is to demonstrate the advantages of adopting an interferometric multiple signal classification (I-MUSIC) approach due to its limited dependence from a priori information on the antenna. The performance of I-MUSIC detection was measured in terms of signal-to-clutter ratio (SCR), signal-to-mean ratio (SMR), and spatial displacement (SD) and compared to other common linear noncoherent imaging methods, such as migration and the standard wideband MUSIC (WB-MUSIC) which also works when the antenna is not accounted for. METHODS: The data were acquired by scanning a synthetic oil-in-gelatin phantom that mimics the dielectric properties of breast tissues across the spectrum 1-3 GHz using a proprietary breast microwave multi-monostatic radar system. The phantom is a multilayer structure that includes skin, adipose, fibroconnective, fibroglandular, and tumor tissue with an adipose component accounting for 60% of the whole structure. The detected tumor has a diameter of 5 mm and is inserted inside a fibroglandular region with a permittivity contrast er-tumor/er-fibroglandular < 1.5 over the operating band. Three datasets were recorded corresponding to three antennas with different coupling mechanisms. This was done to assess the independence of the I-MUSIC method from antenna characterizations. The datasets were processed by using I-MUSIC, noncoherent migration, and wideband MUSIC under equivalent conditions (i.e., operative bandwidth, frequency samples, and scanning positions). SCR, SMR, and SD figures were measured from all reconstructed images. In order to benchmark experimental results, numerical simulations of equivalent scenarios were carried out by using CST Microwave Studio. The three numerical datasets were then processed following the same procedure that was designed for the experimental case. RESULTS: Detection results are presented for both experimental and numerical phantoms, and higher performance of the I-MUSIC method in comparison with the WB-MUSIC and noncoherent migration is achieved. This finding is confirmed for the three different antennas in this study. Although a delocalization effect occurs, experimental datasets show that the signal-to-clutter ratio and the signal-to-mean performance with the I-MUSIC are at least 5 and 2.3 times better than the other methods, respectively. The numerical datasets calculated on an equivalent phantom for cross-testing confirm the improved performance of the I-MUSIC in terms of SCR and SMR. In numerical simulations, the delocalization effect is dramatically reduced up to an SD value of 1.61 achieved with the I-MUSIC in combination with the antipodal Vivaldi antenna. This shows that mechanical uncertainties are the main reason for the delocalization effect in the measurements. CONCLUSIONS: Experimental results show that the I-MUSIC generates images with signal-to-clutter levels higher than 5.46 dB across all working conditions and it reaches 7.84 dB in combination with the antipodal Vivaldi antenna. Numerical simulations confirm this trend and due to ideal mechanical conditions return a signal-to-clutter level higher than 7.61 dB. The I-MUSIC largely outperforms the methods under comparison and is able to detect a 5-mm tumor with a permittivity contrast of 1.5.
Document:

Back to References

contact support

Your session has expired. Redirecting you to the login page...

We use cookie to operate this website, improve its usability, personalize your experience, and track visits. By continuing to use this site, you are consenting to use of cookies. You have the possibility to manage the parameters and choose whether to accept certain cookies while on the site. For more information, please read our updated privacy policy


Cookie Management

When you browse our website, cookies are enabled by default and data may be read or stored locally on your device. You can set your preferences below:


Functional cookies

These cookies enable additional functionality like saving preferences, allowing social interactions and analyzing usage for site optimization.


Advertising cookies

These cookies enable us and third parties to serve ads that are relevant to your interests.