CST – Computer Simulation Technology

Title:
Circularly Polarized Antenna With Steerable Dipole-Like Radiation Pattern
Author(s):
Adam Narbudowicz, Xiulong Bao, Max Ammann, Hammam Shakhtour, Dirk Heberling
Source:
IEEE Transactions on Antennas and Propagation
Vol./Issue/Date:
Volume: 62, Issue: 2, February 2014
Year:
2014
Page(s):
519 - 526
Keywords:
Adaptive antennas, circular polarization, microstrip antennas, omnidirectional antennas
Abstract:
An omnidirectional circularly polarized antenna with a rotatable dipole-shaped radiation pattern is proposed. The antenna is realized using a back-to-back coupled microstrip patch arrangement. The pattern is rotated by means of a phase shift, enabling reception (or transmission) of signals fromall angles around a sphere. The method enables continuous pattern steering without the need for semiconductor or MEMS components integrated into the antenna. It also allows the use of more than one radiation pattern simultaneously, potentially providing coverage for any spherical angle. The theory is supported by simulation and measurement of four typical antenna configurations. The maximum gains are between 1.9 and 4 dBic and average axial-ratio varies between 2.5 and 3.65 dB at 2.47 GHz. The impedance bandwidth is from 2.4 to 2.51 GHz and the reconfigurable circular polarization is achieved from 2.464 to 2.484 GHz.
Document:

Back to References

contact support

Your session has expired. Redirecting you to the login page...

We use cookie to operate this website, improve its usability, personalize your experience, and track visits. By continuing to use this site, you are consenting to use of cookies. You have the possibility to manage the parameters and choose whether to accept certain cookies while on the site. For more information, please read our updated privacy policy


Cookie Management

When you browse our website, cookies are enabled by default and data may be read or stored locally on your device. You can set your preferences below:


Functional cookies

These cookies enable additional functionality like saving preferences, allowing social interactions and analyzing usage for site optimization.


Advertising cookies

These cookies enable us and third parties to serve ads that are relevant to your interests.