CST – Computer Simulation Technology

Title:
Design Method for Circularly Polarized Fabry–Perot Cavity Antennas
Author(s):
Robert Orr, George Goussetis, Vincent Fusco
Source:
IEEE Transactions on Antennas and Propagation
Vol./Issue/Date:
Volume: 62, Issue: 1, January 2014
Year:
2014
Page(s):
19 - 26
Keywords:
Directive antenna, high-impedance surface, partially reflective surface, resonant cavity antenna
Abstract:
A new class of circularly polarized (CP) Fabry–Perot cavity antennas is introduced that maintain the simplicity of a linearly polarized primary feed and a single cavity structure. The proposed antennas employ a double-sided partially reflective surface (PRS), which allows independent control of the magnitude and phase responses for the reflection and transmission coefficients. In conjunction with an anisotropic high-impedance surface (HIS) ground plane, this arrangement allows for the first time a single cavity antenna to produce a specified gain in CP from a linearly polarized primary source. A design procedure for this class of antennas is introduced. The method exploits a simple ray optics model to calculate the magnitude and phase of the electric field in the cavity upon plane wave excitation. Based on this model, analytical expressions are derived, which enforce the resonance condition for both polarizations at a predetermined PRS reflectivity (and hence predetermined antenna gain) together with a 90 differential phase between them. The validity of the concept is confirmed by means of an example entailing an antenna with gain of approximately 21 dB at 15 GHz. Full-wave simulation results and experimental testing on a fabricated prototype are presented and agree well with the theoretical predictions.
Document:

Back to References

contact support

Your session has expired. Redirecting you to the login page...

We use cookie to operate this website, improve its usability, personalize your experience, and track visits. By continuing to use this site, you are consenting to use of cookies. You have the possibility to manage the parameters and choose whether to accept certain cookies while on the site. For more information, please read our updated privacy policy


Cookie Management

When you browse our website, cookies are enabled by default and data may be read or stored locally on your device. You can set your preferences below:


Functional cookies

These cookies enable additional functionality like saving preferences, allowing social interactions and analyzing usage for site optimization.


Advertising cookies

These cookies enable us and third parties to serve ads that are relevant to your interests.