CST – Computer Simulation Technology

Title:
Design of band-notched ultra wideband antenna for indoor and wearable wireless communications
Author(s):
Masood Ur-Rehman, Qammer Hussain Abbasi Muhammad Akram, Clive Parini
Source:
IET Microwaves, Antennas & Propagation
Vol./Issue/Date:
Vol 9 Iss. 3
Year:
2016
Page(s):
pp. 243–251
Abstract:
Design of a tapered-slot ultra wideband (UWB) band-notched wearable antenna is presented in this study. The antenna operation covers the whole UWB frequency spectrum of 7.5 GHz ranging from 3.1 to 10.6 GHz, while rejecting the wireless local area network operation at 5.25 GHz band. The performance of the antenna is analysed through simulations and validated through measurements. The antenna makes use of ultra-thin liquid crystal polymer (LCP) substrate. The presented return loss and radiation pattern results show that the antenna offers excellent performance in the UWB frequency band in free space. Use of the LCP substrate makes the antenna to efficiently mitigate the bending effects. Moreover, the antenna performs well in on-body configurations and its working is little affected in adversely hot and humid weather conditions. Furthermore, it offers good on-body communication link and pulse fidelity. These features make the proposed antenna design a well-suited choice for hand-held and wearable UWB applications.
Document:

Back to References

contact support

Your session has expired. Redirecting you to the login page...

We use cookie to operate this website, improve its usability, personalize your experience, and track visits. By continuing to use this site, you are consenting to use of cookies. You have the possibility to manage the parameters and choose whether to accept certain cookies while on the site. For more information, please read our updated privacy policy


Cookie Management

When you browse our website, cookies are enabled by default and data may be read or stored locally on your device. You can set your preferences below:


Functional cookies

These cookies enable additional functionality like saving preferences, allowing social interactions and analyzing usage for site optimization.


Advertising cookies

These cookies enable us and third parties to serve ads that are relevant to your interests.