CST – Computer Simulation Technology

Dual-Band Filter for WiMAX and WLAN with Improved Upper Stop Band Performance
Anil Kamma, Gopi S. Reddy, Rajesh S. Parmar, Jayanta Mukherjee
Progress In Electromagnetics Research C
Vol. 50, 2014
131 - 138
In this paper, a novel and compact dual-band filter with enhanced upper stop characteristics has been presented. Dual band pass filter characteristics are achieved by introducing transmission zero (TZ) in pass band of band pass filter (BPF). The wide band pass filter (BPF) is implemented by combining low pass filter characteristics (i.e. stepped impedance resonator) and high pass filter characteristics (i.e. short stubs). Closed rectangular ring resonator (CRRR) and open loop rectangular ring (OLRR) combination is used to produce two transmission zeros (TZs). One TZ is placed on the pass band of BPF such that resultant filter characteristic consists of two pass bands. However, the second TZ is placed at edge of the pass band in BPF to improve skirt selectivity. The two pass bands are designed to cover two popular wireless bands namely WiMAX (center frequency f1 (3.5 GHz) and WLAN (center frequency f2 (5.7 GHz)) bands i.e. 3.35-3.65 GHz and 5.5-5.85 GHz respectively. Equi-ripple low pass stepped impedance resonator (SIR) filter response is responsible for improved and spurious free upper stop band (>20 GHz i.e. >6f1) and also provides sharp skirt attenuation at upper stop band. The proposed filter is implemented on an RT/Duroid 5880 (er=2.2) substrate with thickness of 0.785 mm and surface area of 19 × 12 sq. mm. Good agreement between simulated and measured results ensures that the proposed filter is a suitable candidate for modern dual band communications.

Back to References

contact support

Your session has expired. Redirecting you to the login page...

We use cookie to operate this website, improve its usability, personalize your experience, and track visits. By continuing to use this site, you are consenting to use of cookies. You have the possibility to manage the parameters and choose whether to accept certain cookies while on the site. For more information, please read our updated privacy policy

Cookie Management

When you browse our website, cookies are enabled by default and data may be read or stored locally on your device. You can set your preferences below:

Functional cookies

These cookies enable additional functionality like saving preferences, allowing social interactions and analyzing usage for site optimization.

Advertising cookies

These cookies enable us and third parties to serve ads that are relevant to your interests.