CST – Computer Simulation Technology

Title:
Electrodynamic simulations of a photoconductively switched high voltage spark gap
Author(s):
J Hendriks, S B van der Geer, G J H Brussaard
Source:
Journal of Physics D: Applied Physics
Vol./Issue/Date:
Volume 38, Issue 16, 5 August 2005
Year:
2005
Page(s):
2798–2803
Abstract:
We present a full three-dimensional electrodynamic model to simulate a photoconductively switched high voltage spark gap. This model describes the electromagnetic field-propagation in a coaxial spark gap set-up, which determines the rise time of the switched pulse and reveals the influence of discontinuities, such as view ports, on the pulse shape and the rise time. Existing inductive lumped element and transmission line models, used to model laser-triggered spark gaps, are compared with our electrodynamic model. The rise time of the switched pulses in the different models does not differ significantly. In the electrodynamic simulation, a curvature of the electric field wave front is visible, resulting from the presence of non-TEM modes near the gap. Furthermore, oscillations on the output signal are revealed. These oscillations are caused by internal reflections on the inner and outer conductors. Our electrodynamic model is able to visualize the rise time evolution by monitoring the electric field-propagation in the gap region. The presence of view ports in the set-up increases the rise time at the output significantly and induces, owing to internal reflections, extra oscillations in the signal.
Document:

Back to References

contact support

Your session has expired. Redirecting you to the login page...

We use cookie to operate this website, improve its usability, personalize your experience, and track visits. By continuing to use this site, you are consenting to use of cookies. You have the possibility to manage the parameters and choose whether to accept certain cookies while on the site. For more information, please read our updated privacy policy


Cookie Management

When you browse our website, cookies are enabled by default and data may be read or stored locally on your device. You can set your preferences below:


Functional cookies

These cookies enable additional functionality like saving preferences, allowing social interactions and analyzing usage for site optimization.


Advertising cookies

These cookies enable us and third parties to serve ads that are relevant to your interests.