CST – Computer Simulation Technology

H-Plane and E-Plane Loaded Rectangular Slow-Wave Structure for Terahertz TWT Amplifier
Laxma Reddy Billa, Muhammad Nadeem Akram, Xuyuan Chen
Vol 63 No. 4
pp 1722 - 1727
H-plane, E-plane loads, slow-wave structure (SWS), terahertz (THz), traveling-wave tube (TWT)
A novel miniaturized rectangular slow-wave structure (SWS), composed of both H-plane and E-plane corrugations, is proposed for submillimeter or terahertz vacuum electron traveling-wave tube (TWT) devices. The advantage of this SWS is to enhance the interaction impedance, therefore, resulting in higher gain and improved output power of the device. In addition, this structure geometry permits design flexibility to achieve a better dispersion behavior (linear dispersion and wider bandwidth) and easy fabrication by available microfabrication processes. Incorporating an H-plane and E-plane load in the SWS design, we achieved a higher performance TWT amplifier with the central frequency of 400 GHz. Both electromagnetic characteristics and beam–wave interaction analysis are investigated using the 3-D electromagnetic software Computer Simulation Technology studio. The simulation results show that an enhanced interaction of the SWS is obtained, and the amplifier has wide instantaneous bandwidth of 80 GHz and 19.5-dB small signal gain at 400 GHz for 17-kV beam voltage and 20-mA beam current. A saturated output power of more than 19 W is obtained from the large-signal simulations.

Back to References

contact support

Your session has expired. Redirecting you to the login page...

We use cookie to operate this website, improve its usability, personalize your experience, and track visits. By continuing to use this site, you are consenting to use of cookies. You have the possibility to manage the parameters and choose whether to accept certain cookies while on the site. For more information, please read our updated privacy policy

Cookie Management

When you browse our website, cookies are enabled by default and data may be read or stored locally on your device. You can set your preferences below:

Functional cookies

These cookies enable additional functionality like saving preferences, allowing social interactions and analyzing usage for site optimization.

Advertising cookies

These cookies enable us and third parties to serve ads that are relevant to your interests.