CST – Computer Simulation Technology

IEEE Transaction on Terahertz Science and Technology

Title:
IEEE Transaction on Terahertz Science and Technology
Author(s):
Itai Hayut, Alexander Puzenko, Paul Ben Ishai, Alexander Polsman, Aharon J. Agranat, Yuri Feldman
Source:
IEEE Transactions on Terahertz Science and Technology
Vol./Issue/Date:
Volume: 3, Issue: 2, March 2013
Year:
2012
Page(s):
207 - 215
Keywords:
Electromagnetic (EM) simulations, skin, sub-mm wave band, sweat ducts
Abstract:
The helical structure of human eccrine sweat ducts, together with the dielectric properties of the human skin, suggested that their electromagnetic (EM) properties would resemble those of an array of helical antennas. In order to examine the implications of this assumption, numerical simulations in the frequency range of 100–450 GHz, were conducted. In addition, an initial set of measurements was made, and the reflection spectrum measured from the skin of human subjects was compared to the simulation results. The simulationmodel consisted of a three layer skinmodel (dermis, epidermis, and stratum corneum) with rough boundaries between the layers and helical sweat ducts embedded into the epidermis. The spectral response obtained by our simulations coincides with the analytical prediction of antenna theory and supports the hypothesis that the sweat ducts can be regarded as helical antennas. The results of the spectrum measurements from the human skin are in good agreement with the simulation results in the vicinity of the axial mode. The magnitude of this response depends on the conductivity of sweat in these frequencies, but the analysis of the phenomena and the frequencies related to the antenna-like modes are independent of this parameter. Furthermore, circular dichroism of the reflected electromagnetic field is a characteristic property of such helical antennas. In this work we show that: 1) circular dichroism is indeed a characteristic of the simulation model and 2) the helical structure of the sweat ducts has the strongest effect on the reflected signal at frequencies above 200 GHz, where the wavelength and the dimensions of the ducts are comparable. In particular, the strongest spectral response (as calculated by the simulations and measured experimentally) was noted around the predicted frequency (380 GHz) for the axial mode of the helical structure.
Document:

Back to References

contact support

Your session has expired. Redirecting you to the login page...