CST – Computer Simulation Technology

Title:
Impedance studies of 2D azimuthally symmetric devices of finite length
Author(s):
N. Biancacci, V. G. Vaccaro, E. Métral, B. Salvant, M. Migliorati, L. Palumbo
Source:
PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS
Vol./Issue/Date:
Volume: 17, Issue: 2, 12 February 2014
Year:
2014
Page(s):
021001 - 021001-14
Abstract:
In particle accelerators, the beam quality can be strongly affected by the interaction with self-induced electromagnetic fields excited by the beam in the passage through the elements of the accelerator. The beam coupling impedance quantifies this interaction and allows predicting the stability of the dynamics of high intensity, high brilliance beams. The coupling impedance can be evaluated with finite element methods or using analytical approaches, such as field matching or mode matching. In this paper we present an application of the mode matching technique for an azimuthally uniform structure of finite length: a cylindrical cavity loaded with a toroidal slab of lossy dielectric, connected with cylindrical beam pipes. In order to take into account the finite length of the structure, with respect to the infinite length approximation, we decompose the fields in the cavity into a set of orthonormal modes. We obtain a complete set of equations using the magnetic field matching and the nonuniform convergence of the electric field on the cavity boundaries. We present benchmarks done with CST Particle Studio simulations and existing analytical formulas and codes, pointing out the effect of different material conductivities, finite length, and nonultrarelativistic particle beam velocity.
Document:

Back to References

contact support

Your session has expired. Redirecting you to the login page...

We use cookie to operate this website, improve its usability, personalize your experience, and track visits. By continuing to use this site, you are consenting to use of cookies. You have the possibility to manage the parameters and choose whether to accept certain cookies while on the site. For more information, please read our updated privacy policy


Cookie Management

When you browse our website, cookies are enabled by default and data may be read or stored locally on your device. You can set your preferences below:


Functional cookies

These cookies enable additional functionality like saving preferences, allowing social interactions and analyzing usage for site optimization.


Advertising cookies

These cookies enable us and third parties to serve ads that are relevant to your interests.