CST – Computer Simulation Technology

Microwave-Frequency Experiments Validate Optical Simulation Tools and Demonstrate Novel Dispersion-Tailored Photonic Crystal Waveguides
Jan-Michael Brosi, Juerg Leuthold, Wolfgang Freude
Journal of Lightwave Technology
Volume: 25, Issue: 9, Sept. 2007
Chromatic dispersion, finite integration technique (FIT), group velocity, integrated optics, photonic crystals (PCs), silicon-on-insulator (SOI), slow light
A new experimental method in the microwave regime is introduced to verify the performance of guided-wave photonic devices with high-index contrast. In particular, a novel broadband slow-light or high-dispersion photonic-crystal (PC) waveguide (WG) is studied. By scaling up the structure dimensions, the equivalent fabrication uncertainty can be reduced to 0.5 nm, which, in combination with the available microwave equipment, allows the conduction of reference measurements with a precision that is not possible in optics. Based on these experiments, several numerical band calculation methods for designing the PC-WGs are evaluated, and out of three accurate methods, we identify a fast tool. Furthermore, we check the accuracy of PC device simulations with the finite integration technique using the aforementioned PC-WG. We demonstrate that the device exhibits a region with a low group velocity of 4% of the vacuum speed of light and a region with a high chromatic dispersion of 4 ps/(mm · nm), both in a 1-THz bandwidth. For the first time, we quantify by experiments that a random disorder of the hole radii by 5%, which can be caused by fabrication imperfections, does not significantly degrade the group velocity behavior.

Back to References

contact support

Your session has expired. Redirecting you to the login page...

We use cookie to operate this website, improve its usability, personalize your experience, and track visits. By continuing to use this site, you are consenting to use of cookies. You have the possibility to manage the parameters and choose whether to accept certain cookies while on the site. For more information, please read our updated privacy policy

Cookie Management

When you browse our website, cookies are enabled by default and data may be read or stored locally on your device. You can set your preferences below:

Functional cookies

These cookies enable additional functionality like saving preferences, allowing social interactions and analyzing usage for site optimization.

Advertising cookies

These cookies enable us and third parties to serve ads that are relevant to your interests.