CST – Computer Simulation Technology

Modeling high-order plasmon resonances of a U-shaped nanowire used to build a negative-index metamaterial
Francisco J. Rodríguez-Fortuño, Carlos García-Meca, Rubén Ortuño, Javier Martí, Alejandro Martínez
06. Feb. 2009
075103-1 -075103-10
We apply the concept of slow surface-plasmon polariton standing-wave resonances to model the plasmon resonances which exist on split-ring resonators U-shaped nanowires forming the unit cell of a metamaterial at infrared frequencies. We compare the expected resonances predicted by the model with full electrodynamic three-dimensional simulations of the U-shaped nanowires for varying geometrical parameters and find a reasonably good agreement. We also consider how far-field dipolar coupling between unit-cells and near-field coupling between the U-shaped nanowire’s arms should be taken into account. In addition, we study how the different resonances give rise to negative constitutive parameters for the metamaterial and adjust the geometrical parameters so that the second and third order slow-SPP standing-wave resonances of the U-shaped nanowires result in a double-negative behavior at far-infrared wavelengths without the need of further wires or particles. Finally, we study the effects of stacking N layers of such metamaterial, where each resonant mode splits into N normal mode resonances, showing different electric or magnetic responses. This simple stacked structure maintains the left-handed behavior, exhibiting backward wave propagation.

Back to References

contact support

Your session has expired. Redirecting you to the login page...

We use cookie to operate this website, improve its usability, personalize your experience, and track visits. By continuing to use this site, you are consenting to use of cookies. You have the possibility to manage the parameters and choose whether to accept certain cookies while on the site. For more information, please read our updated privacy policy

Cookie Management

When you browse our website, cookies are enabled by default and data may be read or stored locally on your device. You can set your preferences below:

Functional cookies

These cookies enable additional functionality like saving preferences, allowing social interactions and analyzing usage for site optimization.

Advertising cookies

These cookies enable us and third parties to serve ads that are relevant to your interests.