CST – Computer Simulation Technology

Nanoscope based on nanowaveguides
A. H. Rose, B. M. Wirth, R. E. Hatem, A. P. Rashed Ahmed, M. J. Burns, M. J. Naughton, K. Kempa
Volume: 22, Issue: 5, 27 February 2014
The far field spatial resolution of conventional optical lenses is of the order of the wavelength of light, due to loss in the far field of evanescent, near electromagnetic field components. We show that subwavelength details can be restored in the far field with an array of divergent nanowaveguides, which map the discretized, subwavelength image of an object into a magnified image observable with a conventional optical microscope. We demonstrate in simulations that metallic nanowires, nanocoaxes, and nanogrooves can be used as such nanowaveguides. Thus, an optical microscope capable of subwavelength resolution — a nanoscope — can be produced, with possible applications in a variety of fields where nanoscale optical imaging is of value.

Back to References

contact support

Your session has expired. Redirecting you to the login page...

We use cookie to operate this website, improve its usability, personalize your experience, and track visits. By continuing to use this site, you are consenting to use of cookies. You have the possibility to manage the parameters and choose whether to accept certain cookies while on the site. For more information, please read our updated privacy policy

Cookie Management

When you browse our website, cookies are enabled by default and data may be read or stored locally on your device. You can set your preferences below:

Functional cookies

These cookies enable additional functionality like saving preferences, allowing social interactions and analyzing usage for site optimization.

Advertising cookies

These cookies enable us and third parties to serve ads that are relevant to your interests.