CST – Computer Simulation Technology

Title:
Planoconcave lens by negative refraction of stacked subwavelength hole arrays
Author(s):
M. Beruete, M. Navarro-Cía, M. Sorolla, I. Campillo
Source:
OPTICS EXPRESS
Vol./Issue/Date:
Volume: 16, Issue: 13, 23 June 2008
Year:
2008
Page(s):
9677 - 9683
Abstract:
This work presents the design of a planoconcave parabolic negative index metamaterial lens operating at millimeter wavelengths fabricated by using stacked subwavelength hole arrays. A staircase approximation to the ideal parabola profile has been done by removing step by step one lattice in each dimension of the transversal section. Theory predicts power concentration at the focal point of the parabola when the refractive index equals -1. Both simulation and measurement results exhibit an excellent agreement and an asymmetrical focus has been observed. The possibility to design similar planoconcave devices in the terahertz and optical wavelengths could be a reality in the near future.
Document:

Back to References

contact support

Your session has expired. Redirecting you to the login page...

We use cookie to operate this website, improve its usability, personalize your experience, and track visits. By continuing to use this site, you are consenting to use of cookies. You have the possibility to manage the parameters and choose whether to accept certain cookies while on the site. For more information, please read our updated privacy policy


Cookie Management

When you browse our website, cookies are enabled by default and data may be read or stored locally on your device. You can set your preferences below:


Functional cookies

These cookies enable additional functionality like saving preferences, allowing social interactions and analyzing usage for site optimization.


Advertising cookies

These cookies enable us and third parties to serve ads that are relevant to your interests.