CST – Computer Simulation Technology

Title:
Plasmonic excitations in metallic nanoparticles: Resonances, dispersion characteristics and near-field patterns
Author(s):
Eugen Tatartschuk, Ekaterina Shamonina, Laszlo Solymar
Source:
OPTICS EXPRESS
Vol./Issue/Date:
Volume: 17, Issue: 10, 11 May 2009
Year:
2009
Page(s):
8447 - 8460
Abstract:
Metamaterials acquire their functionality from the structuring of the small building blocks, “artificial atoms”. Our paper provides a study of the resonant behaviour for a variety of metallic nanoparticles in the region of hundreds of THz. Resonant modes for nanorods of rectangular cross section are investigated numerically for different types of excitation and the set of resonant frequencies (fundamental and higher order) are determined for rods of various length. From that the dispersion relationship for surface plasmon-polaritons propagating along the rod is deduced. We analyse resonant-mode near-field distribution of the electric field, including the field lines, to emphasise the underlying physics. Resonant frequencies are also found and field distributions analysed when the rods are combined to form particles of L, U and O shapes. The similarities and differences between those particles, both in the values and in the number of resonances, are discussed. The results of this study may aid the design of nanostructured metamaterials with required properties in the IR and optical domain.
Document:

Back to References

contact support

Your session has expired. Redirecting you to the login page...

We use cookie to operate this website, improve its usability, personalize your experience, and track visits. By continuing to use this site, you are consenting to use of cookies. You have the possibility to manage the parameters and choose whether to accept certain cookies while on the site. For more information, please read our updated privacy policy


Cookie Management

When you browse our website, cookies are enabled by default and data may be read or stored locally on your device. You can set your preferences below:


Functional cookies

These cookies enable additional functionality like saving preferences, allowing social interactions and analyzing usage for site optimization.


Advertising cookies

These cookies enable us and third parties to serve ads that are relevant to your interests.