CST – Computer Simulation Technology

Title:
Point contacts in modeling conducting 2D planar structures
Author(s):
David V. Thiel, Morteza Shahpari, Jan Hettenhausen, Andrew Lewis
Source:
IEEE, Antennas and Wireless Propagation Letters
Vol./Issue/Date:
VOL.XX, YY-YY, 20ZZ
Year:
2015
Page(s):
978 - 981
Keywords:
Antenna Optimization, Antenna Q Factor, Antenna Scattering, Antenna efficiency, Aperture efficiency, Radiation Efficiency, Receiving Antenna
Abstract:
Use of an optimization algorithm to improve performance of antennas and electromagnetic structures usually ends up in planar unusual shapes. Using rectangular conducting elements the proposed structures sometimes have connections with only one single point in common between two neighboring areas. The single point connections (point crossing) can affect the electromagnetic performance of the structure. In this letter, we illustrate the influence of point crossing on dipole and loop antennas using MoM, FDTD, and FEM solvers. Current distribution, radiation pattern, and impedance properties for different junctions are different. These solvers do not agree in the modeling of the point crossing junctions which is a warning about uncertainty in using such junctions. However, solvers agree that a negligible change in the junction would significantly change the antenna performance. We propose that one should consider both bridging and chamfering of the conflicting cells to find optimized structures. This reduces the simulation time by 40% using FDTD modeling, however no significant reduction is obtained using the MoM and FEM methods.
Document:

Back to References

contact support

Your session has expired. Redirecting you to the login page...

We use cookie to operate this website, improve its usability, personalize your experience, and track visits. By continuing to use this site, you are consenting to use of cookies. You have the possibility to manage the parameters and choose whether to accept certain cookies while on the site. For more information, please read our updated privacy policy


Cookie Management

When you browse our website, cookies are enabled by default and data may be read or stored locally on your device. You can set your preferences below:


Functional cookies

These cookies enable additional functionality like saving preferences, allowing social interactions and analyzing usage for site optimization.


Advertising cookies

These cookies enable us and third parties to serve ads that are relevant to your interests.