CST – Computer Simulation Technology

Title:
Polarization-Independent Metamaterial Analog of Electromagnetically Induced Transparency for a Refractive-Index-Based Sensor
Author(s):
Fan-Yi Meng, Qun Wu, Daniel Erni, Ke Wu, Jong-Chul Lee
Source:
IEEE Transactions on Microwave Theory and Techniques
Vol./Issue/Date:
Volume: 60, Issue: 10, October 2012
Year:
2012
Page(s):
3013 - 3022
Keywords:
Electromagnetically induced transparency (EIT), metamaterial, polarization independent, refractive index, sensor
Abstract:
A polarization-independent metamaterial analog of electromagnetically induced transparency (EIT) at microwave frequencies for normal incidence and linearly polarized waves is experimentally and numerically demonstrated. The metamaterial consists of coupled “bright” split-ring resonators (SRRs) and “dark” spiral resonators (SRs) with virtually equal resonance frequencies. Normally incident plane waves with linear polarization strongly couple to the SRR, but are weakly interacting with the SR, regardless of the polarization state. A sharp transmission peak (i.e., the transparency window) with narrow spectral width and slow wave property is observed for the metamaterial at the resonant frequency of both, the bright SRR and the dark SR. The influence of the coupling strength between the SRR and SR on the frequency, width, magnitude, and quality factor of the metamaterial’s transparency window is theoretically predicted by a two-particle model, and numerically validated using full-wave electromagnetic simulation. In addition, it is numerically demonstrated that the EIT-like metamaterial can be employed as a refractive-index-based sensor with a sensitivity of 77.25 mm/RIU, which means that the resonance wavelength of the sensor shifts 77.25 mm per unit change of refractive index of the surrounding medium.
Document:

Back to References

contact support

Your session has expired. Redirecting you to the login page...

We use cookie to operate this website, improve its usability, personalize your experience, and track visits. By continuing to use this site, you are consenting to use of cookies. You have the possibility to manage the parameters and choose whether to accept certain cookies while on the site. For more information, please read our updated privacy policy


Cookie Management

When you browse our website, cookies are enabled by default and data may be read or stored locally on your device. You can set your preferences below:


Functional cookies

These cookies enable additional functionality like saving preferences, allowing social interactions and analyzing usage for site optimization.


Advertising cookies

These cookies enable us and third parties to serve ads that are relevant to your interests.