CST – Computer Simulation Technology

Simple and Efficient High-Dimensional Parametric Modeling for Microwave Cavity Filters Using Modular Neural Network
Yazi Cao, Member, Stefan Reitzinger, Qi-Jun Zhang
IEEE Microwave and Wireless Components Letters
Volume: 21, Issue: 5, May 2011
258 - 260
High-dimensional, microwave filter, neural networks, parametric modeling
This letter presents a simple and efficient high-dimensional parametric model of microwave cavity filters utilizing a modular neural network technique. The filter structure is decomposed into several parts, and a set of neural networks are trained to learn the behavior of the filter parts. These neural networks considered as submodels, are then combined and incorporated into the final model structure. A frequency-space mapping module is introduced to align the combined model to match the overall filter behavior. The proposed method allows the overall model be developed with limited training data of the overall filter. Once trained, the model provides an accurate and fast prediction of EM behavior of filters with high-dimensional geometry parameters as variables. The proposed model is used for fast design optimization of filters. Numerical examples and comparisons with direct EM simulation and optimization are included to demonstrate the merits of the proposed technique.

Back to References

contact support

Your session has expired. Redirecting you to the login page...

We use cookie to operate this website, improve its usability, personalize your experience, and track visits. By continuing to use this site, you are consenting to use of cookies. You have the possibility to manage the parameters and choose whether to accept certain cookies while on the site. For more information, please read our updated privacy policy

Cookie Management

When you browse our website, cookies are enabled by default and data may be read or stored locally on your device. You can set your preferences below:

Functional cookies

These cookies enable additional functionality like saving preferences, allowing social interactions and analyzing usage for site optimization.

Advertising cookies

These cookies enable us and third parties to serve ads that are relevant to your interests.