CST – Computer Simulation Technology

Strong lateral displacement in polarization anisotropic extraordinary transmission metamaterial
M Beruete, M Navarro-Cía, M Sorolla,
New Journal of Physics
Volume: 12, Issue: 6, June 2010
In this paper, a deep numerical as well as experimental study of the anisotropy response of extraordinary transmission metamaterials constructed by stacking subwavelength hole arrays is presented. Two-dimensional (2D) dispersion diagrams for S- and P-polarization were obtained from simulation. From them, it was found that negative refraction can be obtained for the latter case for small angles of incidence. Additionally, it was found that double periodic and dielectric loaded hole arrays are optimal to enlarge the numerical aperture that leads to negative refraction. Several experiments are then presented in the V-band of the millimetre-wave range that show excellent agreement with the numerical calculations. Moreover, the richness of the anisotropic characteristic exhibited by the stacked hole array structure allows for designing structures with complex electromagnetic response other than solely negative refraction. Thus, the results presented here could be taken as a novel route to achieve exotic behaviour, such as negative refraction at other frequency ranges, like terahertz or the visible.

Back to References

contact support

Your session has expired. Redirecting you to the login page...

We use cookie to operate this website, improve its usability, personalize your experience, and track visits. By continuing to use this site, you are consenting to use of cookies. You have the possibility to manage the parameters and choose whether to accept certain cookies while on the site. For more information, please read our updated privacy policy

Cookie Management

When you browse our website, cookies are enabled by default and data may be read or stored locally on your device. You can set your preferences below:

Functional cookies

These cookies enable additional functionality like saving preferences, allowing social interactions and analyzing usage for site optimization.

Advertising cookies

These cookies enable us and third parties to serve ads that are relevant to your interests.