CST – Computer Simulation Technology

Surface Plasmon Interference Nanolithography
Zhao-Wei Liu,† Qi-Huo Wei,‡, Xiang Zhang,†
Nano Letters 2005
Vol. 5, April 2005
957 - 961
A new nanophotolithography technique based on the interference of surface plasmon waves is proposed and demonstrated by using computer simulations. The wavelengths of the surface plasmon waves at metal and dielectric interfaces can reach the nanometer scale while their frequencies remain in the optical range. As a result, the resolution of this surface plasmon interference nanolithography (SPIN) can go far beyond the free-space diffraction limit of the light. Simulation results show that one-dimensional and two-dimensional periodical structures of 40-100 nm features can be patterned using interfering surface plasmons launched by 1D gratings. Detailed characteristics of SPIN such as field distribution and contrast are also investigated.

Back to References

contact support

Your session has expired. Redirecting you to the login page...

We use cookie to operate this website, improve its usability, personalize your experience, and track visits. By continuing to use this site, you are consenting to use of cookies. You have the possibility to manage the parameters and choose whether to accept certain cookies while on the site. For more information, please read our updated privacy policy

Cookie Management

When you browse our website, cookies are enabled by default and data may be read or stored locally on your device. You can set your preferences below:

Functional cookies

These cookies enable additional functionality like saving preferences, allowing social interactions and analyzing usage for site optimization.

Advertising cookies

These cookies enable us and third parties to serve ads that are relevant to your interests.