CST – Computer Simulation Technology

Theory and simulation of surface plasmon excitation using resonant metal nanoparticle arrays
Amitabh Ghoshal, Pieter G. Kik
Journal of Applied Physics
Volume: 103, Issue: 11, Jun 2008
113111-1 - 113111-8
We discuss a plasmonic coupling device consisting of a periodic array of ellipsoidal silver nanoparticles embedded in SiO2 and placed near a silver surface. By tuning the shape of the particles in the array, the nanoparticle plasmon resonance is tuned. The resulting resonantly enhanced fields near the nanoparticles, in turn, excite surface plasmons on the metal film. We have performed finite integration technique simulations of such a plasmon coupler, optimized for operation near a wavelength of 676 nm. Analysis of the frequency dependent electric field at different locations in the simulation volume reveals the separate contributions of the particle and surface resonance to the excitation mechanism. A coupled oscillator model describing the nanoparticle and the metal film as individual resonators is introduced and is shown to reproduce the trends observed in the simulations. Implications of our analysis on the resonantly enhanced excitation of surface plasmons are discussed.

Back to References

contact support

Your session has expired. Redirecting you to the login page...

We use cookie to operate this website, improve its usability, personalize your experience, and track visits. By continuing to use this site, you are consenting to use of cookies. You have the possibility to manage the parameters and choose whether to accept certain cookies while on the site. For more information, please read our updated privacy policy

Cookie Management

When you browse our website, cookies are enabled by default and data may be read or stored locally on your device. You can set your preferences below:

Functional cookies

These cookies enable additional functionality like saving preferences, allowing social interactions and analyzing usage for site optimization.

Advertising cookies

These cookies enable us and third parties to serve ads that are relevant to your interests.