CST – Computer Simulation Technology

Title:
Universal method for the synthesis of arbitrary polarization states radiated by a nanoantenna
Author(s):
Francisco J. Rodr´iguez-Fortu ˜ no, Daniel Puerto, Amadeu Griol, Laurent Bellieres, Javier Mart´i, Alejandro Mart´inez
Source:
Laser & Photonics Reviews
Vol./Issue/Date:
Vol 8, No. 3
Year:
2006
Page(s):
pp L27 - L31
Keywords:
nanoantenna, silicon photonics, polarization synthesis, nanophotonics
Abstract:
Optical nanoantennas efficiently convert confined optical energy into free-space radiation. The polarization of the emitted radiation depends mainly on nanoantenna shape, so it becomes extremely difficult to manipulate it unless the nanostructure is physically altered. Here, a simple way is demonstrated to synthetize the polarization of the radiation emitted by a single nanoantenna so that every point on the Poincaré sphere becomes attainable. The nanoantenna consists of a single scatterer created on a dielectric waveguide and fed from its both sides so that the polarization of the emitted optical radiation is controlled by the amplitude and phase of the feeding signals. The nanoantenna is created on a silicon chip using standard top-down nanofabrication tools, but the method is universal and can be applied to other materials, wavelengths and technologies. This work will open the way towards the synthesis and control of arbitrary polarization states in nano-optics.
Document:

Back to References

contact support

Your session has expired. Redirecting you to the login page...

We use cookie to operate this website, improve its usability, personalize your experience, and track visits. By continuing to use this site, you are consenting to use of cookies. You have the possibility to manage the parameters and choose whether to accept certain cookies while on the site. For more information, please read our updated privacy policy


Cookie Management

When you browse our website, cookies are enabled by default and data may be read or stored locally on your device. You can set your preferences below:


Functional cookies

These cookies enable additional functionality like saving preferences, allowing social interactions and analyzing usage for site optimization.


Advertising cookies

These cookies enable us and third parties to serve ads that are relevant to your interests.