CST – Computer Simulation Technology

Wideband Radar Cross Section Reduction of Slot Antennas Arrays
Simone Genovesi, Filippo Costa, Agostino Monorchio
IEEE Transactions on Antennas and Propagation
Volume: 62, Issue: 1, January 2014
163 - 173
Frequency selective surface (FSS), periodic resistive surface (PRS), radar absorbingmaterials (RAMs), radar cross section reduction (RCSR), slot antennas array
A comprehensive analysis aimed at reducing the radar cross section (RCS) of array antennas, preserving at the same time their radiating performance, is presented. A microstrip slot array is considered as a test case to illustrate the proposed strategy for radar cross section reduction (RCSR). It is shown that a remarkable reduction of the radar signature can be accomplished over a frequency band as wide as two octaves by employing an array of periodic resistive elements in front of the radiating apertures. The monostatic and bistatic RCS of the proposed structures are investigated both for normal and oblique incidence. Different arrangements and geometries of the periodic resistive pattern are thoroughly analyzed showing the benefits and the drawbacks in terms of antenna gain and level of the scattered fields. Furthermore, the use of metallic parasitic elements for enhancing the antenna gain is considered, and the scattering phenomena caused by their presence are addressed, taking into account the appearance of grating lobes. The antenna designs are also analyzed by resorting to a bidimensional color plot presenting the variation of the reradiated field both in frequency and spatial domain. The guidelines illustrated by the proposed examples can be easily applied to other antenna architectures.

Back to References

contact support

Your session has expired. Redirecting you to the login page...

We use cookie to operate this website, improve its usability, personalize your experience, and track visits. By continuing to use this site, you are consenting to use of cookies. You have the possibility to manage the parameters and choose whether to accept certain cookies while on the site. For more information, please read our updated privacy policy

Cookie Management

When you browse our website, cookies are enabled by default and data may be read or stored locally on your device. You can set your preferences below:

Functional cookies

These cookies enable additional functionality like saving preferences, allowing social interactions and analyzing usage for site optimization.

Advertising cookies

These cookies enable us and third parties to serve ads that are relevant to your interests.