CST – Computer Simulation Technology

Title:
Near-Field Inductive-Coupling Link to Power a Three-Dimensional Millimeter-Size Antenna for Brain Implantable Medical Devices
Author(s):
Mohamed Manoufali , Konstanty Bialkowski, Beadaa Jasem Mohammed, Paul C. Mills, and Amin Abbosh
Source:
IEEE Transaction on Biomedical Engineering
Vol./Issue/Date:
Vol. 65, No. 1 January 2018, 1st January 0001
Year:
2018
Page(s):
4-14
Keywords:
Inductive coupling link, realistic human head model, frequency-dispersive dielectric properties, implantable antennas, near EM fields exposure and penetration.
Abstract:
Near-field inductive-coupling link can establish a reliable power source to a batteryless implantable medical device based on Faraday’s law of induction. Methods: In this paper, the design, modeling, and experimental verification of an inductive-coupling link between an off-body loop antenna and a 0.9 mm3 threedimensional (3-D) bowtie brain implantable antenna is presented. To ensure reliability of the design, the implantable antenna is embedded in the cerebral spinal fluid of a realistic human head model. Exposure, temperature, and propagation simulations of the near electromagnetic fields in a frequency-dispersive head model were carried out to comply with the IEEE safety standards. Concertedly, a fabrication process for the implantable antenna is proposed, which can be extended to devise and miniaturize different 3-D geometric shapes. Results: The performance of the proposed inductive link was tested in a biological environment; in vitro measurements of the fabricated prototypes were carried in a pig’s head and piglet. The measurements of the link gain demonstrated −35.83 dB in the pig’s head and −30.81 dB in piglet. Significance: The in vitro measurement results showed that the proposed 3-D implantable antenna is suitable for integration with a miniaturized batteryless brain implantable medical device (BIMD).
Document:

Back to References

contact support

Your session has expired. Redirecting you to the login page...