CST

A dual-band antenna for a sounding rocket

Sounding rockets are relatively small rockets developed primarily for high-altitude experiments, and are used in many academic and low-cost research missions. Antennas for sounding rockets need to be compact, lightweight, omnidirectional and have a form factor that allows them to be integrated on the rocket without causing drag, which can make their design challenging. A group at ENSEIRB-MATMECA, Bordeaux Institute of Technology, used CST STUDIO SUITE to develop a low cost antenna that can be integrated into the nose cone of a rocket and transmit payload and telemetry data in the 869.4–869.65 MHz and 2.4–2.4835 GHz frequency bands.

In the course of flight, the maximum distance between the rocket and the ground base station is 2.5 km, and the elevation relative to the base station varies between 90° and 160° (Figure 1). However, to minimise the risk from malfunctions such as parachute failures, the antenna was designed to have maximal elevation coverage. Full specifications can be found in [1] – the most critical is that in the upper band, the maximum allowed gain variation is 8.7 dB.


A diagram of the rocket’s flight. Over the course of the flight, the angle between the rocket and base station varies considerably.
Figure 1: A diagram of the rocket’s flight. Over the course of the flight, the angle between the rocket and base station varies considerably.

To avoid having any part of the antenna protrude out of the rocket and cause drag, the entire thing is integrated inside the fiber-epoxy nose cone. Although a broadband monopole would be one possible solution, it has few degrees of freedom and this makes it difficult to minimize coupling to the rocket fuselage. A bicone antenna has more degrees of freedom, and can be constructed in a cross-pattern that achieves a low weight but omnidirectional performance (Figure 2).


The antenna design. Full dimensions are available in [1].
Figure 2: The antenna design. Full dimensions are available in [1].

In order to find a design that meets the specifications, the group optimized the antenna parameters using the time domain solver in CST STUDIO SUITE®. Sweeping the parameter g (the gap between the upper and lower halves) allowed the group to impedance match the antenna in both bands (Figure 3 and 4), chosing g = 1mm as the optimum.


(a) Real and (b) imaginary part of antenna impedance Z11 versus g.
Figure 3: (a) Real and (b) imaginary part of antenna impedance Z11 versus g.


Antenna |S11| versus g.
Figure 4: Antenna |S11| versus g.

In designing the length of the taper (L11), there needs to be a compromise between two competing effects. Simulation revealed that increasing L11 reduces the coupling between the antenna and surface waves on the rocket body at 2.45 GHz, and therefore improves the coverage of the antenna. However, this also has the effect of reducing the gain of the antenna. A parameter sweep of L11 from 20 mm to 50 mm found that the best compromise was found at L11 = 40 mm, where the 8.7 dB gain variation range at 2.45 GHz is ? = 18° to 177° (Figure 5).


Simulated elevation radiation patterns, for ?=0°, for varying L11 on a 1.8-m-long fuselage at (left) 869.5 MHz and (right) 2.45 GHz.
Figure 5: Simulated elevation radiation patterns, for ?=0°, for varying L11 on a 1.8-m-long fuselage at (left) 869.5 MHz and (right) 2.45 GHz.

A prototype was constructed (Figure 6), and good agreement was found between the measured and simulated results (Figure 7) – simulation also allowed the performance of the antenna to be analysed as installed on the full-size rocket, which would not fit in the measurement chamber. The antenna met the requirements and was integrated into the Project Artemis rocket, which subsequently won the 2015 Prix Espace et Industrie (Space and Industry Prize) from the French government space agency CNES.


The antenna under test, on a section of rocket fuselage. Students would like to thank the Poly-Grames research center, Montréal, Canada, for the measurement.
Figure 6: The antenna under test, on a section of rocket fuselage. Students would like to thank the Poly-Grames research center, Montréal, Canada, for the measurement.


Radiation patterns at (a) 869.5 MHz and (b) 2.45 GHz at ?=0 – measured and simulated on a 0.28 m section of fuselage, and simulated on the full 1.8 m fuselage.
Figure 7: Radiation patterns at (a) 869.5 MHz and (b) 2.45 GHz at ?=0 – measured and simulated on a 0.28 m section of fuselage, and simulated on the full 1.8 m fuselage.

References

[1] J. Prades, A. Ghiotto, E. Kerhervé and K. Wu, "Broadband Sounding Rocket Antenna for Dual-Band Telemetric and Payload Data Transmission," in IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 540-543, 2016. doi: 10.1109/LAWP.2015.2457338


CST Article "A dual-band antenna for a sounding rocket"
last modified 17. May 2016 4:34
printed 25. Mar 2017 4:38, Article ID 1086
URL:

All rights reserved.
Without prior written permission of CST, no part of this publication may be reproduced by any method, be stored or transferred into an electronic data processing system, neither mechanical or by any other method.

Feedback

12 of 15 people found this article useful

Did you find this article useful?

Other Articles

RF Breakdown Analysis in Space Applications

RF Breakdown Analysis in Space Applications Document type
Devices in the output section of a satellite payload, including filters and multiplexers are subject to high RF power. This could lead to RF breakdown, which may render the specific device useless and, in the end, degrades the reliability of the satellite. Therefore all space high power devices have to be analyzed with regards to their breakdown behavior. This application note shows how CST STUDIO SUITE® and SPARK3D® can be used to investigate these effects via simulation. Read full article..

Environment-Independent Miniature Antennas

Environment-Independent Miniature Antennas Document type
Hubregt J. Visser, PhD, Holst Centre – IMEC-NL Antennas, when brought into close proximity with RF reflective objects or lossy human tissue, will show a degradation in performance. This degradation is visible in the input impedance as a function of frequency and in the radiation pattern, gain and efficiency. In the presentation we will show two examples of miniature antennas designed for on-body use that exhibit a negligible performance degradation when brought near or onto the human body. One of the examples comprises a miniature, curved microstrip patch antenna for application on the wrist, see Figure 1. Here, the ground plane of the patch antenna has been used to form a shielding between antenna and environment. The other example is a CPW printed monopole antenna, embedded in a low-loss dielectric body to contain the fields and thus minimize reactive tuning, see Figure 2. Furthermore the short ground plane of this antenna has been modified to suppress coaxial cable current radiation. In the designs, the human body has been modeled as a curved, layered medium consisting of skin, fat, muscle, bone and, when appropriate, dura, cerebrospinal fluid and brain tissue. The CSTMWS designs, the realized prototypes and the measurement results will be presented. Figure 1: Curved microstrip patch antenna for use on the wrist. Figure 2: Printed monopole antenna in proximity to the human body. Read full article..

Multiphysics Simulation Medical Applications

Multiphysics Simulation Medical Applications
This webinar will introduce the basics of bio-EM simulations, such as the available body models, the choice of numerical solver and relevant post-processing quantities, as well as advanced workflows for multi-channel systems including EM/circuit co-simulation and some HPC aspects. Finally, the tight coupling of the EM solvers with the advanced bio-heat solvers including human thermo-regulation and spin response solvers for MRI imaging will be covered. All steps will be demonstrated with state-of-the-art examples from applications areas like ultra-high-field MRI, implant safety, microwave imaging, hyperthermia, pacemakers, etc. Read full article..

Analysis of a high efficiency reflector feed array

Analysis of a high efficiency reflector feed array
This article demonstrates the application of CST MICROWAVE STUDIO® (CST MWS) to the analysis of large reflector feed arrays. An array consisting of 19 elements was simulated but a larger array of more than 100 elements may also be simulated since the memory scaling with mesh cells in CST MWS is almost linear. The simultaneous excitation feature in CST MWS was applied to obtain farfield patterns in just a single simulation. A parameter sweep was also carried out to obtain the S-Parameters as a funtion of element feeding postion. Read full article..

Modeling Metamaterials - Metamaterial Development using Electromagnetic Simulation

Modeling Metamaterials - Metamaterial Development using Electromagnetic Simulation
Metamaterials are a subject of great interest for both academia and industry, offering the ability to produce electromagnetic phenomena that are not seen in natural materials. These offer potential for new technologies and for existing devices to be made smaller, faster and more efficient. When developing a new metamaterial, simulations can be used both to analyze the bulk effects of the material and to design the individual unit cell. Read full article..
Back Back  

Your session has expired. Redirecting you to the login page...