Defense

Defense technology draws on expertise from many industries, including communication, sensing, automotive and aerospace, and covers land, sea, air and space. Ensuring safe, reliable operation of equipment in complex electromagnetic environments is critical, and many of the challenges faced by defense designers, such as radar cross section (RCS) and electromagnetic pulse (EMP), are unique to the field.

CST STUDIO SUITE® offers solvers suitable for a broad range of problems, from the electrically small to the very large. The versatile transient solver offers the ability to solve broadband problems as well as time-dependent effects such as lightning strike and EMP. The frequency solver meanwhile gives great performance for resonant systems such as filters, and the integral equation solver can calculate very structures such as ships and transport aircraft. For RCS, the asymptotic solver can calculate the scattering from large structures very efficiently.

Defense

All Articles

Designing Building Structures for Protection against EMP and Lightning

Designing Building Structures for Protection against EMP and Lightning
This article will explore the use of electromagnetic simulation when hardening facilities against EMP and lightning. EMP is a high-intensity burst of electromagnetic energy that can potentially cause major disruption to vital infrastructure such as telecommunications, electrical power, banking and finance, emergency services, medical facilities, transportation, food and water supply. Lightning can cause significant damage by directly striking a building, when metallic structures such as electrical wiring provide return current flow in an attempt to equalize potentials. It is therefore essential to protect or “harden” critical facilities by stringent electromagnetic design, including shielding to block incident EMP fields, careful treatment of points of entry (POE) and diversion of lightning currents using down-conductors. This article shows how a simulation of the performance of EMP protection measures at the point of entry, such as filtering and clamping, can be set up and carried out. The simulation of a lightning strike to a building structure is also demonstrated, to show how the induced current return paths can be visualized in order to characterize the possible effect of the lightning strike on systems inside the building. This includes an investigation of cable system positioning inside the building and the prediction of induced shield and internal load currents and the analysis of lightning protection system (LPS), taking into account the effect of down-conductor type and grounding impedance. Read full article..

Supporting Future Aircraft Certifications with EM Simulations

Supporting Future Aircraft Certifications with EM Simulations
Electromagnetic environments as, for instance, high intensity radiated fields (HIRF) and lightning can degenerate aircraft safe operation and even cause catastrophic effects without any precautions taken. The trend toward all-electric aircraft increases the number of aircraft functions performed by avionics. The risk of failure is even higher for modern aircraft with structures made of carbon-fiber composites (CFC). Read full article..

Designing Building Structures for Protection against EMP and Lightning

Designing Building Structures for Protection against EMP and Lightning
We will explore the application of CST STUDIO SUITE® to the simulation of EMP and lightning effects. Simulation will be used to analyze the shielding effectiveness of a building structure, evaluate the impact of adding personnel entryways and utility pipes and predict the transient currents induced in cable systems. The performance of EMP protection measures at the point of entry, such as filtering and clamping, will be assessed. We will simulate a lightning strike to a building structure and visualize the induced current return paths. A lightning protection system (LPS) will be analyzed including the effect of down-conductor type and grounding impedance. Different positions of cable systems inside the building will be simulated and the induced shield and internal load currents predicted. Read full article..

8th Order Dielectric Resonator Filter with Three Asymmetric Transmission Zeroes

8th Order Dielectric Resonator Filter with Three Asymmetric Transmission Zeroes Document type
The dielectric resonator fi lter (Figure 1) is a high-performance filter design which is well-suited for applications where compactness and power are important. These sorts of filters are widely used in communication systems – for example, in mobile phone base-stations. The number of independent design parameters that need to be optimized makes higher-order dielectric resonator filters challenging to tune. Simulation software can therefore be used to make it easier to design and tune these filters. Read full article..

RF Breakdown Analysis in Space Applications

RF Breakdown Analysis in Space Applications Document type
Devices in the output section of a satellite payload, including filters and multiplexers are subject to high RF power. This could lead to RF breakdown, which may render the specific device useless and, in the end, degrades the reliability of the satellite. Therefore all space high power devices have to be analyzed with regards to their breakdown behavior. This application note shows how CST STUDIO SUITE® and SPARK3D® can be used to investigate these effects via simulation. Read full article..

Apollo Microwaves accelerates component design with CST STUDIO SUITE

Apollo Microwaves accelerates component design with CST STUDIO SUITE Document type
Apollo Microwaves is a leading supplier of microwave communication components and sub-systems for the satellite and wireless communication industries. They design and manufacture both standard and custom-engineered components for frequencies ranging from 1 GHz to 60 GHz, which means that their product range needs to be very wide. Read full article..

Design und Bewertung einer Hohlleiter-Schlitzantenne (Slotted Waveguide Antenna,SWA) mit EM-Simulation

Design und Bewertung einer Hohlleiter-Schlitzantenne (Slotted Waveguide Antenna,SWA) mit EM-Simulation
SWAs sind für viele Radaranwendungen nützlich. Sie sind leicht, robust und bieten einen hohen Gewinn und eine sehr gute Richtcharakteristik. Dabei sind sie relativ einfach herzustellen. SWAs bestehen aus einem Hohlleiter, dessen Wand durch Schlitze unterbrochen ist. Read full article..

Traveling Wave Tube Design with Simulation

Traveling Wave Tube Design with Simulation
The development of electron devices or vacuum tubes has advanced a lot over the last century. The principle behind a traveling wave tube (TWT) is the interaction between an electron beam and an electromagnetic wave in a slow wave structure (SWS), by which an input RF-signal is amplified converting the energy of the electron beam into a powerful electromagnetic wave. This webinar will show how the design of such tubes can be bolstered by the use of simulation tools and high-performance computing, beginning with adjusting the geometry of the SWS such that beam and phase velocity of the wave are synchronized. Only one pitch of the SWS needs to be simulated and optimized, using a particle-free eigenmode solver. Further, the analysis of couplers will be shown in terms of their transition behavior. The webinar will conclude with the simulation of a hot test, including the particle beam, to predict the amplification behavior and output frequency. Throughout, simulation speeds and the performance benefits of GPU computing will also be explained. Read full article..

Airbus Defence and Space Analyzes EMC Test Chambers

Airbus Defence and Space Analyzes EMC Test Chambers Document type
Anechoic chamber testing is used to characterize the behavior of devices for electromagnetic compatibility (EMC). Since Airbus Defence and Space’s products are used by military contractors, they are tested in accordance with the MIL-STD-461 standard. This specifies the precise set-up of the testing chamber, including the choice of absorbers, the arrangement of the workbenches and the grounding of the system. Read full article..

Modeling and Simulation of Metamaterial-Based Devices for Industrial Applications

Modeling and Simulation of Metamaterial-Based Devices for Industrial Applications
The subject of metamaterials has rapidly grown over the past few years from a hot topic of academic research to a field with interesting and novel industrial applications. The exotic properties of these metamaterials include negative or low values of permittivity, permeability and refractive index, allowing engineers to manipulate the material’s intrinsic parameters to control the propagation of electromagnetic waves. Some recent industrial applications have seen metamaterial transmission lines being used in broadband filters, multiband components, dual-band tags for UHF-RFID and sensors. The metamaterial-based waveguide structures, such as composite right/left-handed (CRLH) structures, have led to interesting applications of waveguide miniaturization and novel coupler design. Metamaterial-inspired antenna design has produced reflex-cavity antennas with low-profile, high gain, beam steering and frequency agility. Read full article..

Advanced RCS Analysis of Airborne Vehicles

Advanced RCS Analysis of Airborne Vehicles
Analysis by electromagnetic simulation allows the designer to characterise the RCS of a target far more extensively than would be possible for similar cost and time expenditure by measurement. CST STUDIO SUITE® provides extensive functionality to analyse and optimise the RCS of targets of all shapes and sizes. Objects of interest imported from a variety of CAD formats can be easily modified and parameterized. Different solver approaches are available to the user, depending on the size and complexity of the model, and on the desired output. Direct simulation in the time domain allows the application of realistic radar signals, visualization of time domain field interaction with the target, and direct calculation of its radar signature. For larger and more complex structures, the MLFMM and asymptotic solvers are optimized for performing fast mono- and bi-static RCS calculations of single and multiple targets (e.g. physical countermeasures), even considering realistic radar antenna source patterns. Complex material properties, for example of Radar Absorptive Material (RAM) and multi-layer coating material can be considered. This webinar will discuss all these issues using a ship-borne aircraft as an example. Read full article..

CST STUDIO SUITE Brochure

CST STUDIO SUITE Brochure Document type
CST STUDIO SUITE 2016 is the culmination of years of research and development into finding the most accurate and efficient computational solutions for lectromagnetic (EM) designs. From static to optical, and from the nanoscale to the electrically large, CST STUDIO SUITE includes tools for the design, simulation and optimization of a wide range of devices. Analysis is not limited to purely EM effects, but can also include thermal and mechanical effects and circuit simulation. Read full article..

Antenna Magus Flyer

Antenna Magus Flyer Document type
Antenna Magus is a software tool that helps accelerate the antenna design and modelling process. It helps engineers make informed choices of antenna elements from a huge antenna database and to share their proprietary knowledge with others. Good starting designs and parameterised models of antennas can be exported to CST MICROWAVE STUDIO® (CST MWS) for further design. Read full article..

Optenni Lab Flyer

Optenni Lab Flyer Document type
Optenni Lab is a novel software with innovative analysis features that increases the productivity of antenna designers and speeds up the antenna design process. Optenni Lab offers fast fully automatic matching circuit optimization tools, estimation of the obtainable bandwidth of antennas and calculation of the worst-case isolation in multi-antenna systems. With these tools the antenna designer can quickly evaluate various antenna designs and concepts, including multiport antennas and tunable matching circuits. Optenni Lab is very easy to use and does not require specialist know-ledge in impedance matching. Read full article..

CST Defense Flyer

CST Defense Flyer Document type
Aircraft, ships, land vehicles and satellites represent some of the most demanding and complex electromagnetic environments. CST STUDIO SUITE brings together 20 years of experience in the simulation of 3D microwave & RF components, antennas and systems. It is used by government agencies and defense contractors worldwide on a daily basis for mission-critical projects. Read full article..

Simulation of EMI in Hybrid Cabling for Combining Power and Control Signaling

Simulation of EMI in Hybrid Cabling for Combining Power and Control Signaling
An increasing trend in the industry is to combine power and control cables into a single hybrid cable design, reducing the complexity of the system and cost. However, without careful design, high voltage power switching transients may lead to unwanted electromagnetic interference. Typical hybrid cable design parameters may include the separation between conductors, twist rate of twisted pairs, shielding and screen types. This webcast will explore the simulation of hybrid cable design using CST CABLE STUDIO and the prediction of EMI levels. Topics covered will include the modeling of shield transfer impedance, crosstalk and induced common mode currents. Read full article..

Modeling HIRF Effects on Aircraft

Modeling HIRF Effects on Aircraft
Electromagnetic environmental effects (E3) can cause electronic devices to malfunction or fail altogether. High Intensity Radiated Fields (HIRF), from sources such as TV and radio stations, radar and satellite communication systems, may disturb the safe operation of aircraft electronics. The behavior of aircraft when exposed to a HIRF environment can be simulated effectively using CST MICROWAVE STUDIO® (CST MWS). With CST MWS, surface current and field distributions can be calculated and the coupling into shielded structures predicted. Read full article..

Matching circuit optimization for antenna applications

Matching circuit optimization for antenna applications Document type
Impedance matching is an essential part of antenna design. The input impedance of an antenna needs to be reasonably close to the amplifier impedance (e.g. 50 Ohm), otherwise the signal is reflected back to the amplifier and not radiated by the antenna. In many applications matching circuits consisting of discrete inductors and capacitors, or transmission lines are used to improve the impedance matching characteristics of the antenna. This white paper discusses the optimization of matching circuits especially to antenna applications. Although the design of matching circuits sounds simple, there are many practical considerations that need to be addressed. Read full article..

Investigating the Principles of a Dielectric Laser Accelerator

Investigating the Principles of a Dielectric Laser Accelerator
This article presents a principle investigation on dielectric laser accelerators via simulation. Read full article..

Electromagnetic Simulation of Composite Materials and Cable Harnesses in Aircraft

Electromagnetic Simulation of Composite Materials and Cable Harnesses in Aircraft
This webinar will discuss efficient EM modeling techniques for simulating composite materials such as carbon fiber laminates at the full aircraft level. The impact of composite materials on electromagnetic effects including installed antenna performance and lightning strikes will be explored. The webinar will also highlight recent advances in cable harness modeling and the effect of different shielding and grounding/bonding schemes for installation in aircraft. Read full article..

Optimization of a Reflector Antenna System Webinar

Optimization of a Reflector Antenna System Webinar
The optimization of high gain reflector antennas presents a real challenge for conventional simulation tools. The range of geometric sizes and physical operating principles means that significant improvements in simulation time can be obtained by the clever combination of different numerical techniques. This webinar will describe how the new smart assembly mode simulation system in CST STUDIO SUITE 2011 enables the engineer to model complex reflector antenna and feed systems efficiently and accurately. Read full article..

A Two-Way Link between CST STUDIO SUITE and Optenni Lab

A Two-Way Link between CST STUDIO SUITE and Optenni Lab
A short video demonstrating the two-way link between CST STUDIO SUITE® and Optenni Lab. Read full article..

EMC/E3 analysis of rotorcraft electrical system exposed to antenna radiation and incident EMP

EMC/E3 analysis of rotorcraft electrical system exposed to antenna radiation and incident EMP
This webcast discusses the application of full wave modeling to predicting EMC/E3 performance in a rotorcraft. We start by investigating the coupling from a blade installed on the fuselage to internal cable systems. CST CABLE STUDIO is used to efficiently and accurately model the bi-directional interaction between electromagnetic fields and the complex cable system. True transient co-simulation enables direct time-domain analysis of voltages and currents induced in cable systems, due to an incident EMP. Finally, non-linear components are added to the model to assess the performance of transient protection devices (TPD’s). Read full article..

Electromagnetic Simulation in Radar System Design

Electromagnetic Simulation in Radar System Design
This webcast will discuss the application of CST STUDIO Suite to a full radar system design. CST’s complete simulation technology enables the most appropriate method/solver to be applied to the diverse range of components typically found in a radar system. For the digital design, combined PCB/package analysis is necessary to achieve adequate signal integrity and minimize interference/emissions Read full article..

Simulation of 650 GHz Backward Wave Oscillators

Simulation of 650 GHz Backward Wave Oscillators
In this acticle the simulation of novel interdigital backward wave oscillators with CST PARTICLE STUDIO® is described. The mutual coupling of the charged particle movement and transient electromagnetic fields is taken into account by a sophisticated Particle in Cell algorithm. The resulting output power is in excellent agreement with theoretical values. Results are presented with the courtesy and permission of Teraphysics Corporation, USA. Read full article..

Optimisation of a 10-Way Conical Power Combiner

Optimisation of a 10-Way Conical Power Combiner
This article describes the use of CST MICROWAVE STUDIO® in simulating and optimising a 10-way conical transmission line power combiner operating at X-band (6-14 GHz). Simulated and measured results are compared. Read full article..

Antenna design for the detection of alive buried victims under thick layers of rubble

Antenna design for the detection of alive buried victims under thick layers of rubble Document type
Floc’h Jean Marie, IETR The antenna is used with UWB Radar techniques in order to locate buried alive victims. The detection is based on the signature of alive persons by using Doppler analysis of movements and respiration. Detecting victims in this environment is very difficult due to the large dynamic range of signal levels. In fact, the reflected signal caused by the buried alive victim is very low behind other reflected or disturbing signals such as mobile phones, vegetation movements, water, rescuers… A two flares UWB antenna, light weight and easy transportable has been specially design for the research of buried victims beneath building rubble. This paper focuses on antenna design, simulation using CST software and measurement. These measurements have been made by IETR and CEA. The experimental results show a good comparison between measurements and simulations. The goals for the design were: - Frequency band: 300 MHz – 3 GHz - Compact antenna - Gain around 10 dBi at the center frequency - Low back side radiation - Good impulse response - Very light weight antenna Read full article..

X-Band Squintless Horn Antenna Array (96 elements)

X-Band Squintless Horn Antenna Array (96 elements)
This article concerns the design of a X-Band squintless horn antenna array consisting out of 96 radiating elements. The full design of the 2.4m antenna blank (including the simultaneous excitation of all 96 arms) has been performed within CST MICROWAVE STUDIO®. The simulated results have been in an excellent agreement with compact range measurements. Read full article..

Ferrite-loaded waveguide antenna

Ferrite-loaded waveguide antenna
The behaviour of a ferrite loaded waveguide antenna is predicted first by a 2D-analytical model and second by CST MICROWAVE STUDIO®. The results of the predictions are compared with measurements. (Courtesy and permission of KAIST Korea.) Read full article..

Bandpass Waveguide Filter with Dual Mode Cavities

Bandpass Waveguide Filter with Dual Mode Cavities
This waveguide filter has been simulated with CST MICROWAVE STUDIO® general purpose frequency domain solver applying a tetrahedral mesh. Read full article..

A Small, Efficient, Linear-polarized Omni-directional Antenna

A Small, Efficient, Linear-polarized Omni-directional Antenna
Nearly full-sized performance from a spherical coil only 1/6th as long in the E-plane normal direction as a half-wave dipole antenna. Read full article..

The Modelling of Lightning Strikes

The Modelling of Lightning Strikes
This article examines the modelling of lightning strikes using CST MICROWAVE STUDIO® (CST MWS). The surface current distribution due to a double-exponential form lightning strike on the nose of an airplane is calculated by way of example. Read full article..

Electrical Fast Transient/Burst (EFT/B) Susceptibility of an LV Circuit Breaker

Electrical Fast Transient/Burst (EFT/B) Susceptibility of an LV Circuit Breaker
The coupled voltage at component level has been simulated using CST MWS for two PCB releases of the same Low Voltage Circuit Breaker (LV-CB) electronic control scheme. The results show a good agreement with actual measurements. Read full article..

Benchmark MEE 1997

Benchmark  MEE  1997
The dual mode filter was developed, measured, and simulated by ESA (European Space Agency). Read full article..

Your session has expired. Redirecting you to the login page...