• Which Products are you interested in ?

    CST offers a wide range of EM simulation software to address design challenges across the electromagnetic spectrum, from static and low frequency to microwave and RF, for a range of applications, including EDA & electronics, EMC & EMI and charged particle dynamics.

  • Antenna Magus
  • IdEM
  • FEST3D
  • Optenni Lab
  • Looking for a Training, Workshop or eSeminar ?

    CST STUDIO SUITE® is being demonstrated at trade shows and workshops all over the world. Take a look at the list of conferences and exhibitions CST will be attending and get further information regarding CST workshops, eSeminars and training days.

  • TrainingsRegular training courses are held in CST's offices in Asia, Europe, and North America. Please check our trainings section for detail of trainings in all over the globe. Advance registration is normally required.

  • WorkshopsCST hosts workshops in multiple languages and in countries around the world. Workshops provide an opportunity to learn about specific applications and refresh your skills with experienced CST support staff. Make sure you visit our workshop section.

  • eSeminarsThroughout the year, CST simulation experts present eSeminars on the applications, features and usage of our software. You can also view past eSeminars by searching our archive and filtering for the markets or industries that interest you most.

  • Check our latest Events
  • Why create a MyCST Account ?

    A MyCST account may facilitate your access to many of the offerings on the CST website, for example the registration for eSeminars and the watching of eSeminars recordings, setting email preferences, and there is more functionality to come. It is required to participate in workshops and trainings.

  • Personal PreferencesAllows you to update your email preferences and areas of interest. It helps us to personalize your experience.

  • EventsSearch for events by location, industry and application. Once you are registered, you will be able to manage your registrations and check important details about your events. This section also provides you with a repository for Workshop & Training material.

  • LibraryYou can collect articles you find on the CST website to reference or read later by clicking on the “Add this article” button at the bottom of the article page.

  • Create Your Own Account
  • Need technical Support ?

    Customers can customize their accounts once they have completed the account creation process. This platform acts as vivid interface between CST and our customers.

    We therefore offer access to the latest Service Packs (including an automatic notification that a new Service Pack is available), a steadily growing database of Frequently Asked Questions (FAQs), Application Notes and Training Videos, as well as an individual FTP section for easy exchange of large files with our support team.

  • Do I need an Account?To access the Support Site a valid maintenance contract and a one-time registration is required.

    Please note that your Support login does not work for the MyCST account.

  • Get Support
  • How to request a Trial License ?

    Get your license in only three steps:

    1. Fill in the required fields in the contact form on the right and click "Send Us Your Request".

    2. Lean back and wait until one of our CST Experts contacts you.

    3. Enjoy a our trial license.

  • Student Edition

    Student Edition The CST STUDIO SUITE® Student Edition has been developed with the aim of introducing you to the world of electromagnetic simulation, making Maxwell’s equations easier to understand than ever. With this edition you have, bar some restrictions, access to our powerful visualization engine and some of the most advanced solvers of CST STUDIO SUITE.

    Student Edition

CST – Computer Simulation Technology

Electromagnetic Circuit Co-Simulation of a Touchscreen Capacitance Sensor System

Electromagnetic field simulation is an extremely useful tool in the design and analysis of devices based on the measurement of capacitance to establish the presence and/or position of objects. An example of this is a touchscreen device which is covered in this article.

For such simulations, the CST EM STUDIO® (CST EMS) electrostatic solver can automatically extract the capacitance matrix for arbitrary complex electrode systems. With the aid of parametric analysis, the matrix may be generated for a large number of finger positions above the electrodes. This capacitance matrix is seamlessly transfered to the integrated CST DESIGN STUDIO™ (CST DS) circuit simulation module to allow the detection circuits to be simulated and optimized.

Figure 1: Electrode potential definition

The starting point for the simulation of such a sensor is the geometrical construction of the model. This can be achieved by either constructing the sensor electrode system using the simple, but powerful geometric modeler built into the CST STUDIO SUITE® GUI. Alternatively, for complex sensor electrode arrays, the CST® EDA import interface may be used. Supported formats include Cadence Allegro...

®, Mentor Graphics®, Expedition®, ODB++ amongst others.

The effect of a finger placed above the sensor array is a critical requirement in the simulation. 3D CAD models may also be incorporated into the model. In this case, a 3D finger model was imported via the SAT interface.

The next step entails the definition of the electrode potentials in the system. The definition of potential groups in CST EMS allows a straightforward but general workflow. The potentials are shown in Figure 1 for a simple touchscreen sensor which were defined using this feature.

Figure 2: Effect of the finger on the electric field in the electrode system

A plot of the electric field for a particular finger position is shown in figure 2. This result forms the basis of a simulation of the touchscreen sensor. The equivalent capacitance is available for each simulation carried out for a particular finger position. This is extended by parametric analysis allowing the user to extract the capacitance as a function of finger position which may vary in 3 dimensions i.e. horizontally and vertically. Once the parametric analysis is complete, the data is automatically transferred to the CST DS circuit simulator for transient analysis.

Figure 3: CST DS Schematic of the capacitive matrix sensor

Figure 3 shows the CST DS schematic in which a standard GPIO is used to generate a dedicated number of pulses to capacitors which generates a voltage on them. After a certain number of pulses the transfered charge is discharged by a series resistor while an analogue comparator indicates when GND is reached. This discharge time is measured by a timer and used for correlation. The difference in time is used to detect whether a finger is present or not.

Figure 4: Typical result of captured time showing detected finger position at cx2y2

Figure 4 shows a typical result whereby an indication of the position of the finger is given by the discharge times. The range of possible positions is extremely wide and depends on the parametric set defined by the user. Furthermore, the complexity of the detector circuit may be increased accordingly. Optimization on the field and/or system level may be easily carried out in the integrated optimizer.

Simulation offers an insight into the behavior of a device that cannot be achieved in a test environment. Another benefit is that the number of prototypes may be significantly reduced which accelerates the development process. In addition, unwanted effects and disturbances in existing equipment may also be efficiently and cost-effectively investigated.


[1] http://www.atmel.com/products/touchsolutions/bsw/qmatrix.aspx

Rate this Article

0 of 5 Stars
5 Stars
4 Stars
3 Stars
2 Stars
1 Stars
contact support

Your session has expired. Redirecting you to the login page...

We use cookie to operate this website, improve its usability, personalize your experience, and track visits. By continuing to use this site, you are consenting to use of cookies. You have the possibility to manage the parameters and choose whether to accept certain cookies while on the site. For more information, please read our updated privacy policy

Cookie Management

When you browse our website, cookies are enabled by default and data may be read or stored locally on your device. You can set your preferences below:

Functional cookies

These cookies enable additional functionality like saving preferences, allowing social interactions and analyzing usage for site optimization.

Advertising cookies

These cookies enable us and third parties to serve ads that are relevant to your interests.