CST – Computer Simulation Technology

EM Simulation for Space Applications


Satellites provide a challenging environment for electromagnetic components and antennas. The limited available space has to be shared by multiple tightly-clustered systems that have to operate correctly in extreme thermal conditions. Electromagnetic simulation plays a critical role in ensuring that mission-critical components work as intended once in orbit. This eSeminar will give an overview of how the range of simulation tools in CST STUDIO SUITE® can be used to design and optimize antennas and components quickly and with high accuracy.

Satellites typically use high-gain antennas with electrically large apertures. The design and integration of the antennas on satellites require careful analysis and optimization. Coexistence between antennas, and possible interference with other systems on the satellite, can cause EMC issues which should ideally be understood at an early phase in the design process. ...

The feed chain for antennas consists of multiple waveguide components including orthomode transducers (OMTs), waveguide transitions, and filters. Attendees will learn how the System Assembly and Modelling framework in CST STUDIO SUITE allows the designer to split the chain into its constituent components. These can then be optimized more efficiently individually, using the most appropriate solver technology, while still having the overall system performance as a goal.

Multipaction is an additional issue the presentation will address, and which can seriously affect high-power components in space. Charged particle simulation can be used in combination with full-wave 3D EM solvers in CST STUDIO SUITE to design components in such a way as to avoid this issue.

Attendees will also be shown how thermal considerations are important in antenna and component design. Thermal energy, both from the sun and from high-power components, can detune components and deform antennas. This can change the frequency performance of feed chains and the far-field radiating performance of antennas. The tightly integrated EM-thermal CST MPHYSICS® simulation capability allows these effects to be understood and compensated for early in the design process.

    Related Videos

  • Getting Ahead with RF Breakdown Simulation for Space Hardware

    In this eSeminar we will review the RF Breakdown effects which can occur in space hardware, namely multipactor discharge. The eSeminar will focus on the advantages of using full numerical approaches instead of analytical ones to determine the breakdown...

  • Electromagnetic Simulation of Composite Materials and Cable Harnesses in Aircraft

    This eSeminar will discuss efficient EM modeling techniques for simulating composite materials such as carbon fiber laminates at the full aircraft level. The impact of composite materials on EM effects including installed antenna performance and lightning...

  • CST STUDIO SUITE 2018 Technology Highlights

    This eSeminar will highlight some of the best improvements and new features in CST STUDIO SUITE®, including classical EM-simulations, workflows, multiphysics and coupled simulations.

  • Gyrotron Simulation

    A gyrotron is typically challenging to simulate in 3D. The focus of the eSeminar will be a simulation of a gyrotron operating at 2nd harmonic frequency. This eSeminar shows aspects to keep in mind when setting up the simulation and explains the differences...

  • Traveling Wave Tube Design with Simulation

    This eSeminar will show how the design of traveling wave tubes can be bolstered by the use of simulation tools and high-performance computing. This will include discussion on adjusting the geometry of the slow wave structure, analyzing couplers and the...

contact support

Your session has expired. Redirecting you to the login page...