CST – Computer Simulation Technology

EM Simulation for Space Applications

 

Satellites provide a challenging environment for electromagnetic components and antennas. The limited available space has to be shared by multiple tightly-clustered systems that have to operate correctly in extreme thermal conditions. Electromagnetic simulation plays a critical role in ensuring that mission-critical components work as intended once in orbit. This webinar will give an overview of how the range of simulation tools in CST® STUDIO SUITE® can be used to design and optimize antennas and components quickly and with high accuracy.

Satellites typically use high-gain antennas with electrically large apertures. The design and integration of the antennas on satellites require careful analysis and optimization. Coexistence between antennas, and possible interference with other systems on the satellite, can cause EMC issues which should ideally be understood at an early phase in the design process. ...

The feed chain for antennas consists of multiple waveguide components including orthomode transducers (OMTs), waveguide transitions, and filters. Attendees will learn how the System Assembly and Modelling framework in CST STUDIO SUITE allows the designer to split the chain into its constituent components. These can then be optimized more efficiently individually, using the most appropriate solver technology, while still having the overall system performance as a goal.

Multipaction is an additional issue the presentation will address, and which can seriously affect high-power components in space. Charged particle simulation can be used in combination with full-wave 3D EM solvers in CST STUDIO SUITE to design components in such a way as to avoid this issue.

Attendees will also be shown how thermal considerations are important in antenna and component design. Thermal energy, both from the sun and from high-power components, can detune components and deform antennas. This can change the frequency performance of feed chains and the far-field radiating performance of antennas. The tightly integrated EM-thermal MPHYSICS® simulation capability allows these effects to be understood and compensated for early in the design process.

Rate this Video

    Related Videos

  • Getting Ahead with RF Breakdown Simulation for Space Hardware 2017

    In this webinar we will review the RF Breakdown effects which can occur in space hardware namely multipactor discharge. The webinar will focus on the advantages of using full numerical approaches instead of analytical ones to determine the breakdown power...

  • Gyrotron Simulation

    A gyrotron is typically challenging to simulate in 3D, as they often are electrically large. High-performance computing using one or multiple graphics processing Units (GPU) can accelerate simulations significantly and make the 3D Particle in Cell (PIC)...

  • Traveling Wave Tube Design with Simulation

    The development of electron devices or vacuum tubes has advanced a lot over the last century. The principle behind a traveling wave tube (TWT) is the interaction between an electron beam and an electromagnetic wave in a slow wave structure (SWS), by which...

  • Getting Ahead with Filter Designer 3D 2017

    The CST® Filter Designer 3D is a complete synthesis tool for narrow bandpass filters and diplexers. It offers a range of solutions throughout the design process of a coupled-resonator filter – regardless of whether it is implemented in planar, waveguide...

  • Multimode Cavity Filter Simulation

    Modern communication systems are becoming increasingly demanding on the utilization of the frequency spectrum. In order to realize some of these stringent specifications microwave filters are typically required. Compactness and flexibility are some of...

contact support

Your session has expired. Redirecting you to the login page...