• Which Products are you interested in ?

    CST offers a wide range of EM simulation software to address design challenges across the electromagnetic spectrum, from static and low frequency to microwave and RF, for a range of applications, including EDA & electronics, EMC & EMI and charged particle dynamics.

  • Antenna Magus
  • IdEM
  • FEST3D
  • Optenni Lab
  • Looking for a Training, Workshop or eSeminar ?

    CST STUDIO SUITE® is being demonstrated at trade shows and workshops all over the world. Take a look at the list of conferences and exhibitions CST will be attending and get further information regarding CST workshops, eSeminars and training days.

  • TrainingsRegular training courses are held in CST's offices in Asia, Europe, and North America. Please check our trainings section for detail of trainings in all over the globe. Advance registration is normally required.

  • WorkshopsCST hosts workshops in multiple languages and in countries around the world. Workshops provide an opportunity to learn about specific applications and refresh your skills with experienced CST support staff. Make sure you visit our workshop section.

  • eSeminarsThroughout the year, CST simulation experts present eSeminars on the applications, features and usage of our software. You can also view past eSeminars by searching our archive and filtering for the markets or industries that interest you most.

  • Check our latest Events
  • Why create a MyCST Account ?

    A MyCST account may facilitate your access to many of the offerings on the CST website, for example the registration for eSeminars and the watching of eSeminars recordings, setting email preferences, and there is more functionality to come. It is required to participate in workshops and trainings.

  • Personal PreferencesAllows you to update your email preferences and areas of interest. It helps us to personalize your experience.

  • EventsSearch for events by location, industry and application. Once you are registered, you will be able to manage your registrations and check important details about your events. This section also provides you with a repository for Workshop & Training material.

  • LibraryYou can collect articles you find on the CST website to reference or read later by clicking on the “Add this article” button at the bottom of the article page.

  • Create Your Own Account
  • Need technical Support ?

    Customers can customize their accounts once they have completed the account creation process. This platform acts as vivid interface between CST and our customers.

    We therefore offer access to the latest Service Packs (including an automatic notification that a new Service Pack is available), a steadily growing database of Frequently Asked Questions (FAQs), Application Notes and Training Videos, as well as an individual FTP section for easy exchange of large files with our support team.

  • Do I need an Account?To access the Support Site a valid maintenance contract and a one-time registration is required.

    Please note that your Support login does not work for the MyCST account.

  • Get Support
  • How to request a Trial License ?

    Get your license in only three steps:

    1. Fill in the required fields in the contact form on the right and click "Send Us Your Request".

    2. Lean back and wait until one of our CST Experts contacts you.

    3. Enjoy a our trial license.

  • Student Edition

    Student Edition The CST STUDIO SUITE® Student Edition has been developed with the aim of introducing you to the world of electromagnetic simulation, making Maxwell’s equations easier to understand than ever. With this edition you have, bar some restrictions, access to our powerful visualization engine and some of the most advanced solvers of CST STUDIO SUITE.

    Student Edition

CST – Computer Simulation Technology

Heat Load Investigation of a PETRA III Toroid

DESY is one of the world's leading accelerator centers that develops, builds and operates large particle accelerators. These accelerators produce photon beams which are used to investigate the structure of matter. The ring accelerator PETRA III is a storage-ring based X-ray radiation source that produces X-rays of an exceptionally high brilliance.

Toroids are used in accelerators to measure beam charge. They are basically a kind of transformer where the beam can be considered as a primary circuit inducing a current in the secondary winding. Figure 1 shows a model of such a non-destructive beam current monitor. It consists of beam tube, ceramic, bellow, core and holders. The bellow is shielded with an elongated tube, and a spring separates the volume of the tube from the volume between the tube and the bellow....

Courtesy of DESY, Hamburg, Germany

Figure 1: Structure of the toroid

CST PARTICLE STUDIO® (CST PS), together with the thermal solver of CST MPHYSICS® STUDIO (CST MPS), can be used to investigate the thermal environment of this setup. The energy loss of the beam is simulated with CST PS wake field solver (WAK) to calculate the induced heat load in the toroid. The stationary thermal solver is then used to simulate the maximum temperature in the device.

The induced power in the toroid is calculated as follows:

Pmax = Imax Q kloss = Imax2 t kloss / Nmin (1)

where Imax = 100 mA is the beam current, t = 7.685µ s the accelerator revolution time, Nmin = 40 the number of bunches in the accelerator, and Q and k are beam charge and wake loss factor respectively.

For a simulation with the WAK solver, only vacuum, ceramic and air part around the core are considered. The particle beam has a bunch length of 13.2 mm and charge of 1 nC. Figure 2 shows the cross section of the model used for the WAK Solver. The blue and orange lines are the beam path and wake field integration path. Since the beam is assumed to be ultrarelativistic an indirect integration method can be used to improve the results.

Figure 2: Wake field simulation model

To ensure an appropriate accuracy a mesh convergence study has been performed. The mesh has to be fine enough to resolve the structure properly, especially at the bellow and the spring (see Figure 3). The loss factor converges to kloss = 7.9 V/nC (see Figure 4), resulting in a deposited Power of Pmax = 15.17 W according to (1).

Figure 3: Final mesh after convergence study

Figure 4: Convergence of loss factor vs. mesh refinement

For the thermal simulation, a tube with 20 cm length is added on both sides. Each end of the tube terminates at a thermal boundary with constant temperature of 20°C. No cooling is applied in the transverse direction, which implies that no air cooling is being assumed in the setup. Thermal conductivity of the materials is needed for the stationary thermal solver and can be loaded from the material library. Radiation properties are applied as surface conditions (see Figure 5). This setup, considering the cooling due to the longer tube as well as heat radiation, represents the actual cooling process in the monitor.

Figure 5: Thermal boundary conditions (left) and radiation surfaces showing emissivity values between 0.015 and 0.28 (right)

The induced power is distributed uniformly on the inner surface of the ceramic and on both ends of the tube near the ceramic. This setup is valid, since an a priori simulation revealed no influence of eigenmodes in the structure. With Imax = 100 mA and 40 bunches (resulting in 15.17 W), the temperature rises to Tmax = 79.2°C (see Figure 6). This means an increase of 59.2°C. Measurements on a slightly different model showed comparable values.

Figure 6: Temperature distribution on the surface

Performing a parameter sweep of the beam current, we can see that the temperature shows quadratic behavior as also predicted by equation (1). The beam setting with 100 mA and 40 bunches is chosen for thermal analysis because it is assumed to be the case with highest induced power. The maximum temperature of 80°C is not expected to influence the properties of the toroid.

Figure 7: Temperature vs. beam current

Rate this Article

0 of 5 Stars
5 Stars
4 Stars
3 Stars
2 Stars
1 Stars
contact support

Your session has expired. Redirecting you to the login page...

We use cookie to operate this website, improve its usability, personalize your experience, and track visits. By continuing to use this site, you are consenting to use of cookies. You have the possibility to manage the parameters and choose whether to accept certain cookies while on the site. For more information, please read our updated privacy policy

Cookie Management

When you browse our website, cookies are enabled by default and data may be read or stored locally on your device. You can set your preferences below:

Functional cookies

These cookies enable additional functionality like saving preferences, allowing social interactions and analyzing usage for site optimization.

Advertising cookies

These cookies enable us and third parties to serve ads that are relevant to your interests.