CST – Computer Simulation Technology

Evaluating SAR from a Mobile Phone using Simulations with Human Head and Hand Models

For mobile phone certification, the Specific Absorption Rate (SAR) needs to be proven to fulfill international standards such as the IEEE C95.3 standard when the phone is in realistic surroundings. Once the design of a mobile phone in free space is concluded, the performance needs to be tested in situations such as near to a head and when placed in a hand. This is important since the field distribution and radiation pattern will be influenced by the proximity of the head and hand. The transient solver of CST MICROWAVE STUDIO® (CST MWS) with its PERFECT BOUNDARY APPROXIMATION® (PBA) and THIN SHEET TECHNIQUE™ (TST) is widely known to deliver very accurate and fast results for various types of antennas including electrically small antennas such as those found in mobile phones. ...

The following study uses a complete CAD model of a Sony Ericsson mobile phone which was imported in CST MWS as a step-file. In addition, the SAM phantom head and a phantom hand are imported, as shown in Figure 1.

Figure 1: Mobile phone with SAM-head and hand phantoms

For the discretization a global number of 15 lines per wavelength was chosen. The detailed parts of the antenna are automatically refined by the CST MWS expert settings. The final number of mesh-cells sums up to be around 11 Million cells. This mesh leads to a total simulation time of 129 min on a 64 bit PC with a 2.0 GHz processor for a broadband analysis up to 2.5 GHz. A view of the mesh is shown in Figure 2.

Figure 2: Mesh view

Due to the high dielectric permittivity of 40 in the brain tissue the mesh needs to be much finer in the head region compared to the surrounding vacuum. In classical time domain solvers these fine mesh-lines need to be extended to the boundary of the computational domain (as e.g. in Fig. 2). However, the subgridding scheme in CST MWS allows different levels of mesh to be used for different solids in the model. Using the subgridding reduces the number of mesh-cells to just 4.5 million (see Fig.3).

Figure 3: View of a mesh using subgridding

The resulting field distribution at 1.8 GHz is shown in Figure 4. It can clearly be seen how the wavelength inside the head is shortened compared to in a vacuum due to the high dielectric values. The radiated field is basically guided around the head.

Figure 4: E-field distribution at the GSM band at at 1.8 GHz

The farfield plot (Figure 5) shows clearly that the main radiation direction is located between the hand and the head.

Figure 5: Farfield pattern at 1.8 GHz

A requirement for the certification is to be compliant to the SAR standard IEEE C95.3. Currently the SAR value needs to be measured, but already in the design stage it is very useful to check this value through simulation. In the near future pure simulation may be sufficient for certification. Figure 6 displays the distribution of the SAR value averaged over 1g tissue mass.

Figure 6: SAR distribution averaged over 1g following the IEEE C95.3 standard

This article has shown how a single simulation tool, namely the CST MWS transient solver, can be used to not only design and optimize the antenna of a mobile phone in isolation but also check its performance in the presence of a human head and hand. The very high efficiency of the transient solver is clearly shown in terms of simulation time. Despite having more then 11 Million mesh-cells the simulation required just over two hours. In just one simulation the broadband return-loss, the field distribution, the radiation pattern and the SAR-values for various frequencies can be determined.

Rate this Article

0 of 5 Stars
5 Stars
4 Stars
3 Stars
2 Stars
1 Stars
contact support

Your session has expired. Redirecting you to the login page...

We use cookie to operate this website, improve its usability, personalize your experience, and track visits. By continuing to use this site, you are consenting to use of cookies. You have the possibility to manage the parameters and choose whether to accept certain cookies while on the site. For more information, please read our updated privacy policy

Cookie Management

When you browse our website, cookies are enabled by default and data may be read or stored locally on your device. You can set your preferences below:

Functional cookies

These cookies enable additional functionality like saving preferences, allowing social interactions and analyzing usage for site optimization.

Advertising cookies

These cookies enable us and third parties to serve ads that are relevant to your interests.