• Which Products are you interested in ?

    CST offers a wide range of EM simulation software to address design challenges across the electromagnetic spectrum, from static and low frequency to microwave and RF, for a range of applications, including EDA & electronics, EMC & EMI and charged particle dynamics.

  • CST STUDIO SUITE
  • CST EMC STUDIO
  • CST BOARDCHECK
  • Antenna Magus
  • IdEM
  • FEST3D
  • Optenni Lab
  • Looking for a Training, Workshop or eSeminar ?

    CST STUDIO SUITE® is being demonstrated at trade shows and workshops all over the world. Take a look at the list of conferences and exhibitions CST will be attending and get further information regarding CST workshops, eSeminars and training days.

  • TrainingsRegular training courses are held in CST's offices in Asia, Europe, and North America. Please check our trainings section for detail of trainings in all over the globe. Advance registration is normally required.

  • WorkshopsCST hosts workshops in multiple languages and in countries around the world. Workshops provide an opportunity to learn about specific applications and refresh your skills with experienced CST support staff. Make sure you visit our workshop section.

  • eSeminarsThroughout the year, CST simulation experts present eSeminars on the applications, features and usage of our software. You can also view past eSeminars by searching our archive and filtering for the markets or industries that interest you most.

  • Check our latest Events
  • Why create a MyCST Account ?

    A MyCST account may facilitate your access to many of the offerings on the CST website, for example the registration for eSeminars and the watching of eSeminars recordings, setting email preferences, and there is more functionality to come. It is required to participate in workshops and trainings.

  • Personal PreferencesAllows you to update your email preferences and areas of interest. It helps us to personalize your experience.

  • EventsSearch for events by location, industry and application. Once you are registered, you will be able to manage your registrations and check important details about your events. This section also provides you with a repository for Workshop & Training material.

  • LibraryYou can collect articles you find on the CST website to reference or read later by clicking on the “Add this article” button at the bottom of the article page.

  • Create Your Own Account
  • Need technical Support ?

    Customers can customize their accounts once they have completed the account creation process. This platform acts as vivid interface between CST and our customers.

    We therefore offer access to the latest Service Packs (including an automatic notification that a new Service Pack is available), a steadily growing database of Frequently Asked Questions (FAQs), Application Notes and Training Videos, as well as an individual FTP section for easy exchange of large files with our support team.

  • Do I need an Account?To access the Support Site a valid maintenance contract and a one-time registration is required.

    Please note that your Support login does not work for the MyCST account.

  • Get Support
  • How to request a Trial License ?

    Get your license in only three steps:

    1. Fill in the required fields in the contact form on the right and click "Send Us Your Request".

    2. Lean back and wait until one of our CST Experts contacts you.

    3. Enjoy a our trial license.

  • Student Edition

    Student Edition The CST STUDIO SUITE® Student Edition has been developed with the aim of introducing you to the world of electromagnetic simulation, making Maxwell’s equations easier to understand than ever. With this edition you have, bar some restrictions, access to our powerful visualization engine and some of the most advanced solvers of CST STUDIO SUITE.

    Student Edition

CST – Computer Simulation Technology

Optimization of Torque in a Permanent Magnet Synchronous Motor (PMSM) for Traction Applications

This article summarizes the simulation and optimization of a 200 Hz, 8-Pole Permanent Magnet Synchronous Motor (PMSM) typically used for traction applications in automotive and transportation systems. The aim is to apply CST EM STUDIO® (CST EMS) to the optimization of two conflicting goals - maximum average torque and minimum torque ripple.

Figure 1 shows the CST EMS model of the principal features of the motor. Generally, electrical machines are, for efficiency and accuracy reasons, preferably simulated in 2D. However, to facilitate easy switching between 2D and 3D, the core model is constructed in 3D. The user may then determine whether the appropriate 2D or 3D solver is used. A clear advantage is that the geometry, materials and other model parameters are consistent between the models - critical when switching between 2D and 3D simulations....

This explains the 3D construction of the model even though the simulations are performed with the 2D transient motion solver in CST EMS. The user can simply specify the cut-plane for use in this solver. It should also be added that the conductivity in the permanent magnets has been set to zero since the focus of this article is on the optimization of the torque in the motor. The inclusion of the eddy currents in the permanent magnets would adversely affect the simulation time without any appreciable effect on the accuracy of the results especially due to the fact that the magnets are embedded in the rotor as opposed to being surface mounted.



Figure 1: General PMSM model description

In CST EMS a rotation gap can be defined to which a constant speed can be attributed. Alternatively, it's also possible to apply the calculation of the equation of motion instead. The rotation gap facilitates a moving mesh technique for the transient time-step simulation. A clear advantage with the moving mesh technique, as opposed to re-meshing at each time-step, is that mesh noise is virtually eradicated - an issue which can critically affect the calculation of cogging torque.

A parameter, speed, has been attributed to this rotation gap to facilitate parametric data extraction as a function of speed e.g. Back-EMF versus speed.

A non-linear M19 BH characteristic is applied to both the stator and rotor components. The barriers have been modeled as air.



Figure 2: Definition of permanent magnet and barrier shapes and positions

Figure 2 focuses on the parametric definition of the barriers. A polygon curve definition is applied in which separate parameters have been attributed to the local u,v coordinates of the individual polygon points. These parameters are to be used in the optimization. In this model, the initial and final points in the definition are locked to the end points of the adjacent permanent magnet.

The distances and angles shown in the figure also indicate the parametric set-up of the permanent magnets.



Figure 3: Extraction of torque and torque ripple used in the optimization

Figure 3 shows the torque in the motor as function of time for the initial model geometry. Also shown is the definition of the average torque and ripple. These single values are used for the optimization. These definitions may be arbitrarily defined by the user to allow more complex goals.



Figure 4: Sum of all goals versus optimizer step (Nelder Mead Simplex Algorithm)

The CST® Optimizer is a multidimensional one which can simultaneously optimize several parameters. Local optimization techniques include, amongst others, the Trust Region Framework and the Nelder Mead Simplex methods. Global optimizers such as CMA Evolutionary Strategy, a Genetic and a Particle Swarm are also available.

The choice of optimization technique depends on several factors such as the number of variables, parameter space size, how far away the starting point is from the optimum etc. The Nelder Mead Simplex method was chosen for this optimization. An added advantage using this method is its ability to continue optimization even if for some parameter settings the model cannot be evaluated i.e. infeasible results.

The average torque (Goal > 400 Nm) and torque ripple (Goal < 40 Nm) results are passed on to the optimizer in the form of a goal function which is minimized. The goal values may be arbitrarily selected to instruct the optimizer to find the maximum average torque even if this value is not obtainable with the parameter constraints.

Figure 4 shows the sum of all goals where a convergence can be clearly seen.



Figure 5: Initial and optimized steady-state torque versus time

Figure 5 shows the steady state torque for both the initial and optimized geometries.



Figure 6: Initial and optimized rotor geometries

In the initial model, the permanent magnets were buried intentionally deep within the rotor which clearly leads to poor torque production in the motor. In figure 6, the biggest improvement can be seen in the average torque. The improvement in the torque ripple is marginal. This is to be expected since the magnets are much closer to the surface of the rotor in the optimized configuration and the interaction between the magnets and stator teeth becomes significant.



Figure 7: Time variation of the absolute magnetic flux density

Monitors are available to allow the magnetic fields and other quantities to be extracted. Figure 7 shows the absolute value of the magnetic flux density versus time. Further post-processing of this data may be performed such as the extraction of field values at points or on faces.



Figure 8: Back-EMF per phase versus time

In contrast to a magnetostatic parametric analysis, a transient motion solution enables the automatic calculation of the time-varying inductance and the Back-EMF in each phase as shown in figure 8.



Figure 9: Peak and RMS Back-EMF (V) versus Speed (RPM) at No-Load

The usefulness of the Back-EMF is also exhibited in figure 9 in which its variation is plotted as a function of speed.

This articles serves to demonstrate some of the concepts and functionality required to perform the electromagnetic field simulation and optimization of a typical permanent magnet synchronous machine. Through the optimization of the flux barriers geometry, the stray flux was reduced and so the average torque increased. To further reduce the torque ripple, other approaches may be applied such as modifying the rotor surface profile.

In conjunction with modern optimization tools, finite element simulation allows the designer to investigate and improve current designs or develop new motor topologies and concepts.

Rate this Article

0 of 5 Stars
5 Stars
0%
4 Stars
0%
3 Stars
0%
2 Stars
0%
1 Stars
0%
contact support

Your session has expired. Redirecting you to the login page...

We use cookie to operate this website, improve its usability, personalize your experience, and track visits. By continuing to use this site, you are consenting to use of cookies. You have the possibility to manage the parameters and choose whether to accept certain cookies while on the site. For more information, please read our updated privacy policy


Cookie Management

When you browse our website, cookies are enabled by default and data may be read or stored locally on your device. You can set your preferences below:


Functional cookies

These cookies enable additional functionality like saving preferences, allowing social interactions and analyzing usage for site optimization.


Advertising cookies

These cookies enable us and third parties to serve ads that are relevant to your interests.